## **CHAPTER**

# MEASURES OF CENTRAL TENDENCY PAST YEAR QUESTIONS

| 1.   | If x and y are related by x Nov-2006                        | -y - 10 = 0 and mode of                  | of x is known to be 23,               | , then the mo    | ode of y is :      |
|------|-------------------------------------------------------------|------------------------------------------|---------------------------------------|------------------|--------------------|
|      | (a) 20                                                      | (b) 13                                   | (c) 3                                 | (d) 23           |                    |
| 2.   | A man travels at a speed                                    | of 20km/hr and then                      | returns at a speed of 3               | 30 km/ hr. I     | His average        |
|      | speed of the whole journey $(a) 25 \text{km/hr}$            | (18).                                    | (c) $2/4$ km/hr                       | (d) None         | 1107-2000          |
| 3    | For a moderately skewed of                                  | distribution quartile de                 | viation and the standa                | rd deviation     | are related        |
|      | by :                                                        | 3                                        |                                       |                  | Nov-2006           |
|      | (a) S.D. $=\frac{2}{3}Q.D$                                  | (b) S.D. $=\frac{3}{4}Q.D$               | (c) S.D. $=\frac{4}{3}Q.D$            | (d) S.D. =       | $\frac{3}{2}$ Q.D  |
| 4.   | The median of the data 13,                                  | 8, 11, 6, 4, 15, 2, 18, is               | 5:                                    |                  | Feb-2007           |
|      | (a) 5                                                       | (b) 8                                    | (c) 11                                | (d) 9.5          |                    |
| 5.   | The sum of the squares of                                   | deviations of a set of                   | observations has the sr               | nallest valu     | e, when the        |
|      | deviations are taken from t                                 | heir:                                    |                                       |                  | Feb-2007           |
|      | (a) A.M.                                                    | (b) H. M.                                | (c) G. M.                             | (d) None         |                    |
| 6.   | Which of the following res                                  | sult hold for a set of dis               | tinct positive observat               | ions ?           | May-2007           |
|      | (a) A . M. $\geq$ G. M. $\geq$ H.                           | M.                                       | (b) G. M. $>$ A. M. $>$ I             | H. M.            |                    |
|      | (c) G. M. $\geq$ A. M. $\geq$ H. N                          | <b>1</b> .                               | (d) A . M. $>$ G. M $>$ I             | H. M.            |                    |
| 7.   | If the A. M. and H.M. for t                                 | wo numbers are 5 and                     | 3.2 respectively then the             | he G.M. wil      | 1 be : <b>Aug-</b> |
|      | 2007                                                        |                                          |                                       |                  |                    |
| _    | (a) 4.05                                                    | (b) 16                                   | (c) 4                                 | (d) 4.10         |                    |
| 8.   | are used for measur                                         | ing central tendency, d                  | ispersion and skewnes                 | s :              | Aug-2007           |
|      | (a) Median                                                  | (b) Deciles                              | (c) Percentiles                       | (d) Quartil      | es                 |
| 9.   | An aeroplane flies from A                                   | to B at the rate of 500                  | ) km / hr and comes b                 | back from B      | to A at the        |
|      | rate of 700 km / hr. The av                                 | erage speed of the aero                  | oplane is :                           |                  | Nov-2007           |
|      | (a) 600km/hr                                                | (b) 583.33 km/hr                         | (c) $100\sqrt{35km/hr}$               | (d) 620 km       | n/nr.              |
| 10.  | For a moderately skewed c                                   | listribution, which of the               | ne following relationsh               | ip holds ?       | Nov-2007           |
|      | (a) Mean - Median = $3 (M$                                  | edian -Mode)                             | (b) Median -Mode                      | = 3 (Mean        | -Median)           |
|      | (c) Mean - Mode = $3$ (Mea                                  | in -Median)                              | (d) Mean - Median =                   | 3 (Mean -M       | lode)              |
| 11.  |                                                             | e called ratio averages                  |                                       |                  | Nov-2007           |
| 10   | (a) H.M. & G. M.                                            | (b) H.M. & A.M.                          | (c) A. M. & G. M.                     | (d) None         | E.L. 2009          |
| 14.  | (a) High                                                    | (b) low                                  | (a) No                                | (d) Nona o       | rep-2000           |
| 13   | (a) High<br>The mean salary for a grou                      | (0) IOW                                  | (0) NO<br>rs is $\neq$ 5200 per month | and that for     | r a group of       |
| 1.5. | 60  male workers is  6800                                   | per month What is the                    | a combined salary 9                   | and that 101     | <b>Feb.2008</b>    |
|      | $(2) \neq 6160$                                             | (b) $\neq 6280$                          | (c) <b>₹6800</b>                      | (d) <b>₹6020</b> | <b>FCD-2000</b>    |
| 1/   | (a) 10100                                                   | $(0) \times 0200$<br>with 75 and 65 as k | (C) 10090                             | (u) 10920        | 15 and 13          |
| 14.  | observations then the com                                   | bined H M is given by                    |                                       | containing       | Tuno-2008          |
|      | (a) 70                                                      | (b) 80                                   | (c) 70.35                             | (d) 69 48        | June-2000          |
| 15   | The G M of 4 6 and 8 is :                                   | (0) $00$                                 | (c) 70.33                             | (u) 07.40        | June-2008          |
| 10.  | (a) 4 77                                                    | (h) 5 32                                 | (c) 6 14                              | (d) 5 77         | Sunc 2000          |
| 16.  | G M is a better measure th                                  | an others when                           | (0) 0.11                              | (a) 5.17         | Dec-2008           |
|      | (a) ratios and percentages                                  | are given                                | (b) interval of scale is              | s given          | 2000               |
|      | (c) Both (a) and (b)                                        | 0                                        | (d) Either (a) or (b)                 | 0                |                    |
| 17.  | The median of $x, \frac{x}{2}, \frac{x}{3}, \frac{x}{4}$ is | <b>10.Find x where x</b> > 0             | 0                                     |                  | June-2009          |
|      | (a) 24                                                      | (b) <b>32</b>                            | (c) <b>8</b>                          | ( <b>d</b> ) 16  |                    |
|      | Answer:                                                     |                                          |                                       |                  |                    |

(a) **Step -1** : Arrange the data in ascending order.

(d) ₹ 82.92

$$\frac{x}{5}, \frac{x}{3}, \frac{x}{2}, x$$
Step - 2: Median =  $\left(\frac{n+1}{2}\right)^{\text{th}}$  term  
=  $\left(\frac{4+1}{2}\right)^{\text{th}}$  term  
= (2.5)^{\text{th}} term  
So, Median = 2<sup>nd</sup> term + 0,5 (3<sup>rd</sup> term - 2<sup>nd</sup> term)  
10 =  $\frac{x}{3}$  + 0.5  $\left(\frac{x}{2} - \frac{x}{3}\right)$   
10 =  $\frac{x}{3}$  + 0.5  $\left(\frac{3x-2x}{6}\right)$   
10 =  $\frac{x}{3} + \frac{x}{12}$   
10 =  $\frac{4x-x}{12}$   
10 =  $\frac{5x}{12}$   
x =  $\frac{10 \times 12}{5}$   
x = 24  
t The number of x in 24

(b) ₹ 78.56

 $\therefore$  The value of x is 24.

18. The average salary of 50 men was ₹ 80 but it was found that salary of 2 of them were ₹ 46 and ₹ 28 which was wrongly taken as ₹ 64 and ₹ 82. The revised average salary is :

(c) ₹ 85.26

Answer:

(b) Mean =  $\frac{\sum x}{N}$   $80 = \frac{\sum x}{50}$   $\therefore$  Wrong  $\sum x = 80 \times 50 = 4000$ So, corrected  $\sum x = 4000 - 64 - 82 + 46 + 28 = 3928$ Therefore, revised average salary =  $\frac{\sum x}{N} = \frac{3,928}{50}$ Revised Average Salary = Rs. 78.56

**19.** If A be the A.M. of two positive unequal quantities X and Y and G be their G.M., then ; **June-**2009

```
(a) A < G (b) A > G (c) A \le G (d) A \ge G
```

Answer:

(b) For any set of positive observation, we have the following inequality:
 A.M. ≥ G.M. ≥ H.M.
 The equality sign occurs, when all the observation are equal.

If all the observations are positive and unequal then the inequality is: A.M.>G.M.>H.M.

Therefore, we can conclude that A.M. > G.M. for positive unequal quantities. 20. When mean is 3.57 and mode is 2.13 then the value of median is \_\_\_\_\_\_. Dec-2009

(a) 3.09 (b) 5.01 (d) None of these+ (c) 4.01 Answer: (a) Mean = 3.57Mode = 2.13As per the empirical formula, Mode = 3 Median - 2 Mean2.13 = 3 Me -  $2 \times 3.57$ 2.13 = 3 Me - 7.143 Me = 2.13 + 7.143 Me = 9.27Me =  $\frac{9.27}{3}$  = 3.09.  $\therefore$  Median = 3.09 June-2010 **21.** The harmonic mean of 1, 1/2, 1/3 ..... 1/n is

(d) 1/(n - 1)

(a) 1/(n+1)**Answer:** 

(b) For a given set of non-zero observations, harmonic mean is defined as the reciprocal of the A.M. of the reciprocals of the observations. Therefore, H.M. for a variable x is given by

(c) (n + 1)/2

$$H = \frac{n}{\sum(1/x_i)}$$
$$= \frac{n}{1+2+3+\cdots+n}$$
$$= \frac{n}{\frac{n}{2}(n+1)}$$
$$= \frac{2}{(n+1)}$$

(b) 2/(n+1)

22. The mean weight of 15 students is 110 kg. The mean weight of 5 of them is 100 kg. and of another five students is 125 kg. the mean weight of the remaining students is: June-2010 (d) None of these (b) 105 (a) 120 (c) 115

Answer:

| ( <b>b</b> ) Total weight of 1 <sup>st</sup> five students | $= 5 \times 100 = 500$    |
|------------------------------------------------------------|---------------------------|
| Total weight of another five students                      | $s = 5 \times 125 = 625$  |
| Total weight of 10 students                                | =500+625=1125             |
| Total weight of 15 students                                | $= 15 \times 110 = 1650$  |
| ∴ Total weight of remaining 5 student                      | ts = 1650 - 1125 = 525    |
| $\therefore$ Mean weight of remaining 5 student            | $s = \frac{525}{5} = 105$ |

23. In a class of 11 students, 3 students were failed in a test. 8 students who passed secured 10,11,20,15,12,14,26 and 24 marks respectively. What will be the median marks of the students **June-2010** (b) 15 (c) 13 (d) 13.5

(a) 12

Answer:

(a) Let  $x_1, x_2, x_3$  be the 3 students failing in test Marks of 11 students in ascending order are –

x<sub>1</sub>, x<sub>2</sub>, x<sub>3</sub>, 10, 11, 12, 14, 15, 20, 24, 26  
Median of discrete series 
$$=\frac{n+1^{th}}{2}$$
 term  
 $=\frac{11+1^{th}}{2}$  term  
 $=6^{th}$  term  
 $=12$ 

24. A lady travel at a speed of 20km/h and returned at quicker speed. If her average speed of the whole journey is 24km/h, find the speed of return journey (in km/h) **Dec-2010** (a) 25 (b) **30** (c) 35 (d) 38

**Answer:** 

(b) In this question we will apply formula for harmonic mean as equal Distance(s) covered with variable speed.

Since, H.M. = 
$$\frac{N}{\sum 1/x}$$

Let x km/hr be speed of return journey

$$24 = \frac{2}{\frac{1}{20} + \frac{1}{x}}$$
$$24 = \frac{2 \times 20x}{2 \times 20x}$$

$$\frac{24}{24x} - \frac{1}{x+20} = 40x$$
  
$$\frac{16x}{16x} = 480$$

x = 30 km/hr.

**25.** Let the mean of the variable 'x' be 50, then the mean of u=10+5x will be : **Dec-2010** (a) 250 (d) 273 (b) 260 (c) 265

**(b)** u = 10 + 5xSince Mean is dependent of change of Origin & Scale

|     | ∴ New N                                                                                              | Au = 10 + 5 Mx                                                            |                                        |                  |                     |                  |
|-----|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------|------------------|---------------------|------------------|
|     | Mu = 10                                                                                              | $+5 \times 50 = 260$                                                      |                                        |                  |                     |                  |
| 26. | If the difference will be                                                                            | between mean a . June-2011                                                | and Mode is 63                         | , then the diffe | erence between Me   | ean and Median   |
|     | (a) 63                                                                                               | (b) 3                                                                     | 31.5                                   | (c) 21           | (d)Nor              | ne of the above. |
|     | Answer:                                                                                              |                                                                           |                                        | (•) = 1          |                     |                  |
|     | (c) Given ·                                                                                          | Mode – Mean –                                                             | 63                                     |                  |                     |                  |
|     | We kno                                                                                               | w the Empirical                                                           | Relationshin k                         | etween Mean      | Meadian & Mode      | a i o            |
|     | (Mode -                                                                                              | - Mean) – 3(Mea                                                           | adian – Mean)                          |                  |                     | / 1.0.           |
|     |                                                                                                      | 63                                                                        |                                        |                  |                     |                  |
|     | : Meadi                                                                                              | $an - Mean = \frac{1}{3}$                                                 | = 21                                   |                  |                     |                  |
| 27. | If the Arithmeti                                                                                     | c mean between                                                            | two numbers                            | is 64 and the    | Geometric mean b    | etween them is   |
|     | 16. The Harmor                                                                                       | nic Mean betwee                                                           | n them is                              | June-20          | 11                  |                  |
|     | (a) 64                                                                                               | (b) 4                                                                     | ŀ                                      | (c) 16           | (d) 40              |                  |
|     | Answer:                                                                                              |                                                                           |                                        |                  |                     |                  |
|     | (b) Given :                                                                                          | A.M = 64                                                                  |                                        |                  |                     |                  |
|     | G.M =                                                                                                | 16                                                                        |                                        |                  |                     |                  |
|     | H.M =                                                                                                | ?                                                                         |                                        |                  |                     |                  |
|     | We kno                                                                                               | w. $(G.M)^2 = A.N$                                                        | $A \times H.M$                         |                  |                     |                  |
|     | $(16)^2$                                                                                             | $= 64 \times HM$                                                          |                                        |                  |                     |                  |
|     |                                                                                                      | 256                                                                       |                                        |                  |                     |                  |
|     | •• П.М                                                                                               | 64                                                                        |                                        |                  |                     |                  |
|     | ∴ H.M                                                                                                | = 4                                                                       |                                        |                  |                     |                  |
| 28. | The average of a                                                                                     | 5 quantities is 6                                                         | and the average                        | e of 3 is 8. Wh  | at is the average o | f the remaining  |
|     | two.                                                                                                 |                                                                           |                                        |                  |                     | <b>June-2011</b> |
|     | (a) 4                                                                                                | (b) 5                                                                     | 5                                      | (c) 3            | (d) 3.5             |                  |
|     | Answer:                                                                                              |                                                                           |                                        |                  |                     |                  |
|     | ( <b>c</b> ) The av                                                                                  | g. of 5 quantities                                                        | 5 = 6                                  |                  |                     |                  |
|     | $\therefore$ The s                                                                                   | um of 5 quantitie                                                         | $es = 6 \times 5 = 30$                 |                  |                     |                  |
|     | $\therefore$ The av                                                                                  | g. of 3 quantitie                                                         | s = 8                                  |                  |                     |                  |
|     | $\therefore$ The sum                                                                                 | m of 3 quantities                                                         | $= 8 \times 3 = 24$                    |                  |                     |                  |
|     | ∴ Sum of                                                                                             | Remaining Two                                                             | Nos. = 30 - 2                          | 4= 6             |                     |                  |
|     | : Avg of                                                                                             | Remaining two                                                             | $-\frac{6}{2}-3$                       |                  |                     |                  |
| 20  | The set lies of                                                                                      |                                                                           | $\frac{2}{2}$                          |                  | ·····               |                  |
| 29. | The median of I                                                                                      | ollowing numbe                                                            | rs, which are g                        | iven is ascend   | ing order is 25. Fi | nd the value of  |
|     | X.                                                                                                   | 10                                                                        | 1.5                                    | 10               |                     | Dec-2011         |
|     |                                                                                                      | 13                                                                        | 15                                     | 19               | (x+2)               | (x + 4)          |
|     | 30                                                                                                   | 35                                                                        | 39                                     | 46               |                     |                  |
|     | a) 22                                                                                                | b) 20                                                                     | )                                      | c) 15            | d) 30               |                  |
|     | Answer:                                                                                              |                                                                           |                                        |                  |                     |                  |
|     | (a) Numbers                                                                                          | in Ascending O                                                            | rder are                               |                  |                     |                  |
|     | 11, 13, 15                                                                                           | 5, 19, (x+2), (x+2)                                                       | 4), 30, 35, 39                         | 9,46             |                     |                  |
|     | Here                                                                                                 |                                                                           |                                        |                  |                     |                  |
|     | No. of ter                                                                                           | ms(N) = 10                                                                |                                        |                  |                     |                  |
|     | Median =                                                                                             | $\frac{1}{2}\left[\frac{N^{th}}{2}term + \left(\frac{N}{2}\right)\right]$ | $\left(\frac{1}{2}+1\right)^{th}$ term |                  |                     |                  |
|     | $25 = \frac{1}{2} \left[ \frac{10^{th}}{2} term + \left( \frac{10}{2} + 1 \right)^{th} term \right]$ |                                                                           |                                        |                  |                     |                  |
|     | 25=                                                                                                  | $\frac{1}{2}$ [5 <sup>th</sup> term + 6 <sup>th</sup> t                   | erm]                                   | 1                |                     |                  |
|     | $25 = \frac{1}{2}$                                                                                   | [(x+2)+(x+4)]                                                             |                                        |                  |                     |                  |
|     | 50 = 2                                                                                               | 2x +6                                                                     |                                        |                  |                     |                  |
|     | $2\mathbf{x} = 5$                                                                                    | 0-6                                                                       |                                        |                  |                     |                  |
|     | 2x = 4                                                                                               | 4                                                                         |                                        |                  |                     |                  |
|     | x = 22                                                                                               | )                                                                         |                                        |                  |                     |                  |

30. The average age of a group of 10 students was 20 years. The average age increased by two

| entral Tendency                                    |                                                                                                                   | 33.5                                                  | GOPAL BHOOT                     |  |  |  |  |  |
|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------|--|--|--|--|--|
| years when two ne                                  | ew students joined the                                                                                            | group. What is the aver                               | rage age of two new students    |  |  |  |  |  |
| who joined the gro                                 | oup?                                                                                                              |                                                       | Dec-2011                        |  |  |  |  |  |
| a) 22 years                                        | b) 3 years                                                                                                        | c) 44 years                                           | d) 32 years                     |  |  |  |  |  |
| Answer:                                            |                                                                                                                   |                                                       | · ·                             |  |  |  |  |  |
| ( <b>d</b> ) ∴ Averag                              | ge age of 10 students =                                                                                           | = 20 yrs                                              |                                 |  |  |  |  |  |
| ∴ the sum                                          | n of age of 10 students                                                                                           | $= 20 \times 10 = 200$ yrs                            |                                 |  |  |  |  |  |
| if two bo                                          | ys are Increased                                                                                                  | ·                                                     |                                 |  |  |  |  |  |
| the total n                                        | 10.  of students = 10+2 =                                                                                         | = 12                                                  |                                 |  |  |  |  |  |
| and Avera                                          | age Increased by 2 yrs                                                                                            |                                                       |                                 |  |  |  |  |  |
| Then New                                           | v Average = 20 + 2 = 22                                                                                           | 2                                                     |                                 |  |  |  |  |  |
| ∴ The Ave                                          | erage age of 12 studen                                                                                            | ts = 22                                               |                                 |  |  |  |  |  |
| The sum of                                         | of age of 12 students =                                                                                           | $22 \times 12 = 264$                                  |                                 |  |  |  |  |  |
| The sum of                                         | of age of two boys $= 26$                                                                                         | 54 - 200 = 64                                         |                                 |  |  |  |  |  |
| Average A                                          | Age of two boys = $\frac{64}{-}$ =                                                                                | 32                                                    |                                 |  |  |  |  |  |
| 31 Coometrie Maan o                                | $\frac{1}{2}$                                                                                                     | $50 \text{ and } \mathbf{V}$ is: 10. The $\mathbf{v}$ | alua of V is June 2012          |  |  |  |  |  |
| <b>51.</b> Geometric Mean $0$                      | (b) 4                                                                                                             | $(a) \frac{1}{2}$                                     | d) None of the showe            |  |  |  |  |  |
| $\begin{pmatrix} a \\ b \end{pmatrix} \mathcal{L}$ | (0) 4                                                                                                             | (c) $1/2$                                             | d) None of the above.           |  |  |  |  |  |
| Allswer:                                           | M of three observativ                                                                                             | n - 10                                                |                                 |  |  |  |  |  |
| (c) Olvell U<br>Given N                            | a of observation $(n) =$                                                                                          | $\frac{10}{2}$                                        |                                 |  |  |  |  |  |
| $v_1 = 40$                                         | $v_{2} = 50$ $v_{2} = X$                                                                                          | 5                                                     |                                 |  |  |  |  |  |
| $A_1 = 40,$                                        | $\Lambda_2 = J0, \Lambda_3 = \Lambda$                                                                             |                                                       |                                 |  |  |  |  |  |
| GM                                                 | Geometrical Mean $C M = (r - r - r)^{1/3}$                                                                        |                                                       |                                 |  |  |  |  |  |
| 0.M                                                | $G.M = (x_1 \cdot x_2 \cdot x_3)^{1/3}$                                                                           |                                                       |                                 |  |  |  |  |  |
| $(10)^3$                                           | $\begin{array}{l} 10 \\ (10)^3 = 40 \cdot 50 \cdot x \end{array}$                                                 |                                                       |                                 |  |  |  |  |  |
| $(10)^{2}$                                         | = 40.50.7                                                                                                         |                                                       |                                 |  |  |  |  |  |
| 1,000                                              | $y = 40.50 \cdot x$                                                                                               |                                                       |                                 |  |  |  |  |  |
| $X = \frac{1}{40}$                                 |                                                                                                                   |                                                       |                                 |  |  |  |  |  |
| $x = \frac{10}{20}$                                |                                                                                                                   |                                                       |                                 |  |  |  |  |  |
| $x = \frac{20}{1}$                                 |                                                                                                                   |                                                       |                                 |  |  |  |  |  |
| $A = \frac{1}{2}$                                  |                                                                                                                   |                                                       |                                 |  |  |  |  |  |
| 32. The mean of first t                            | hree terms is 14 and m                                                                                            | ean of next two terms is                              | 18. The mean of all five term   |  |  |  |  |  |
| 18. <b>June-2012</b>                               | (1) 15                                                                                                            |                                                       |                                 |  |  |  |  |  |
| (a) 14.5                                           | (b) 15                                                                                                            | (c) 14                                                | (d) 15.6                        |  |  |  |  |  |
| Answer:                                            |                                                                                                                   |                                                       |                                 |  |  |  |  |  |
| (a) Given $x_1, x_2$                               | $\frac{2}{2}, X_3, X_4, X_5 (Say)$                                                                                |                                                       |                                 |  |  |  |  |  |
| •• FOI HISU                                        | $\sum_{x} \sum_{x} x_{1} x_{2} x_{3}$                                                                             |                                                       |                                 |  |  |  |  |  |
| We know :                                          | • Mean $=\frac{2\pi}{n}$                                                                                          |                                                       |                                 |  |  |  |  |  |
| : 14                                               | $\sum (\sum x)_{(x1,x2,x3)}$                                                                                      |                                                       |                                 |  |  |  |  |  |
| $(\Sigma u)$                                       | - 3                                                                                                               |                                                       |                                 |  |  |  |  |  |
| $(\sum x)_{(x1,x2)}$                               | $(\Sigma x^{2}) = 42$                                                                                             |                                                       |                                 |  |  |  |  |  |
| & also 18                                          | $=\frac{(\sum x)(x_{4,x_{5}})}{(x_{4,x_{5}})}$                                                                    |                                                       |                                 |  |  |  |  |  |
| $\therefore (\Sigma r)$                            | $(r_{1} - 36)^{2}$                                                                                                |                                                       |                                 |  |  |  |  |  |
| $(\sum x)$                                         | $(x_{4,x_{5})} = 50$                                                                                              | $(\mathbf{\nabla} \cdot \mathbf{v})$                  |                                 |  |  |  |  |  |
| $\therefore (\sum x)$                              | $\therefore \ (\sum x)(x_{1,} x_{2,} x_{3,} x_{4,} x_{5}) = (\sum x)(x_{1,} x_{2,x_{3}}) + (\sum x)(x_{4,x_{5}})$ |                                                       |                                 |  |  |  |  |  |
|                                                    | = 42 +                                                                                                            | 36                                                    |                                 |  |  |  |  |  |
|                                                    | = 78                                                                                                              |                                                       |                                 |  |  |  |  |  |
| Mean of                                            | f all 5 terms $=\frac{\Omega}{2}$                                                                                 | $\sum x (x1, x2, x3, x4, x5)$                         |                                 |  |  |  |  |  |
|                                                    |                                                                                                                   | 5                                                     |                                 |  |  |  |  |  |
|                                                    | = -                                                                                                               | 5                                                     |                                 |  |  |  |  |  |
|                                                    | = 1                                                                                                               | .5.6                                                  |                                 |  |  |  |  |  |
| <b>33.</b> The mean salary of                      | t a group of 50 persons                                                                                           | s 1s ₹ 5,850. Later on it i                           | s discovered that the salary of |  |  |  |  |  |
| one employee has                                   | been wrongly taken as                                                                                             | ₹ 8,000 instead of ₹ 7,8                              | 500. The corrected mean salary  |  |  |  |  |  |
| is                                                 |                                                                                                                   |                                                       | Dec-2012                        |  |  |  |  |  |

(a) ₹ 5,854

(b) ₹ 5,846

(c) ₹ 5,650

(d) None of the above

Answer:  
(b) Mean 
$$\bar{x} = \frac{\bar{y}x}{3}$$
  
In correct  $\sum x = N, \bar{x}$   
 $= 50 \times 5,850$   
 $= 2,92,300$   
Correct  $\sum x = In correct  $\sum x + Right value - wrong value$   
 $= 2,92,500 - 200$   
 $= 2,92,500 - 200$   
 $= 2,92,500 - 200$   
 $= 2,92,300$   
Correct mean  $= \frac{Correct}{2}x$   
 $= \frac{292,500}{5}$   
 $= 5,846$   
34. If the mode of a data is 18 and mean is 24, then median is _______ Dec-2012  
(a) 18 (b) 24 (c) 22 (d) 21  
Answer:  
(c) Mode = 18, Mean = 24  
Mode = 3 Median - 2 Mean  
18 = 3 Median - 2 Mean  
18 = 3 Median - 24  
Hedian  $= \frac{6}{3} = 22$   
35. For data on frequency distribution of weights:Dec-201270, 73, 49, 57, 56, 44, 56, 71, 65, 62, 60, 50, 55, 49, 63 and 45  
If we assume class length as 5, the number of class intervals would be  
(a) 5 (b) 6 (c) 7 (d) 8  
36. The point of intersection of the "less than" and "more than" ogives correspond to Dec-2012  
(a) Mean (b) Mode (c) Median (d) 10<sup>th</sup> Percentile  
37. A man travels form Agra to Gwalior at an average speed of 30 km per hour and back at an  
average speed of 60 km per hour. What is his avarage speed 7 Dec-2012  
(a) 38 km per hour (b) 40 km per hour (c) 45 km per hour and back at an  
average speed of 50 km per hour. What is his avarage speed 7 Dec-2012  
(a) 38 km per hour (b) 40 km per hour (c) 45 km per hour and back at an  
average speed of 50 km per hour. Mat is his avarage speed 7 Dec-2012  
(a) 38 km per hour (b) 40 km per hour (c) 45 km per hour (d) 35 km per hour  
Answer:  
(b) Average speed  $= \frac{2xy}{3xy}$   
Given  $x = 30 km/h & ky = 60 km/h$   
Average speed  $= \frac{2xy}{3xy}$   
Given  $x = 30 km/h & ky = 60 km/h$   
Average speed  $= \frac{2xy}{3xy}$   
Given  $x = 30 km/h & ky = 60 km/h$   
Average speed  $= 20 km per hour 30$   
a) Mean b) Mode c) Median d) Quartile  
38. Which of the following measures of central tendency cannot be calculated by graphical  
method?  
a) Mean b) Mode c) Median d) Quartile  
39. Geometric mean of 8, 4, 2 is ?  
(a) G.M. =  $(x_1, \cdot x_2, \cdot x_3)^{1/3}$   
 $= (64, -21)^{1/3}$   
 $= (64, -21)^{1/3}$   
 $= (64, -21)^{1/3}$   
 $= 40 \times \frac{1}{3}$$ 

**40.** The average age of 15 students of a class is 15 years. Out of them, the average age of 5 students is 14 years and that of the other 9 students is 16 years. The age of the 15<sup>th</sup> students is:

= 4

| Central Tendency                                        |                                                                          |                                                                                                      | 33.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                               | GOPAL BHOOT                 |                          |                               |
|---------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------|--------------------------|-------------------------------|
| <b>June-2013</b><br>a) 11 years b) 14<br><b>Answer:</b> |                                                                          | 4 years                                                                                              | c) 15 years                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 | d) None o                   | of these                 |                               |
|                                                         | (a) The<br>= (1)<br>= 22<br>= 22<br>= 1                                  | age of $15^{\text{th}}$ studes<br>$5 \times 15) - [(5 \times 14) + 5 - [70 + 144]]$<br>25 - 214<br>1 | nt<br>+ (9×16)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |                             |                          |                               |
| 41.                                                     | In normal distri<br>(a) Equal                                            | bution mean, me<br>(b) N                                                                             | dian and mode<br>Not Equal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | are<br>(c) Zero                 |                             | d) None o                | Dec-2013 of above.            |
| 42.                                                     | The kind of ave<br>(a) Mode, Medi                                        | rages whose valu<br>an (b) M                                                                         | ie can be deterr<br>Mean, Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nined graphicall<br>(c) Mean, M | ly?<br>edian                | (d)None of               | <b>Dec-2013</b> of the above. |
| 43.                                                     | Which of the fo<br>a) Median is ba<br>c) The Median 1<br>The mean of the | llowing statemer<br>sed on all the obs<br>is the 2nd Quartil                                         | nt is true?<br>servations<br>le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | b) The Mode<br>d) The Mode      | e is the mi<br>e is the 5th | id value<br>h decile.    | June-2014                     |
| 44.                                                     |                                                                          |                                                                                                      | $\frac{18}{4}$ 0. Find the value | 6                               | 10                          | D                        | Julie-2014                    |
|                                                         | T.                                                                       | 3                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                               | 10                          | 2                        | -5                            |
| l                                                       | a) 4                                                                     | b) 6                                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | c) 8                            | 1                           | d) 7                     |                               |
|                                                         | Answer:<br>(d)                                                           | ,                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ,                               |                             | ,                        |                               |
|                                                         |                                                                          | X                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | f                               |                             | fx                       |                               |
|                                                         |                                                                          | 2                                                                                                    | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                             | 6                        |                               |
|                                                         |                                                                          | 4                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |                             | 8                        |                               |
|                                                         |                                                                          | 0<br>10                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |                             |                          |                               |
|                                                         | I                                                                        | P+5                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                               |                             | 2P +10                   |                               |
|                                                         |                                                                          |                                                                                                      | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | =11                             |                             | $\sum f x = 2\mathbf{I}$ | P+52                          |
|                                                         | $\bar{x} = \bar{x}$                                                      | $\sum fx$                                                                                            | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                             |                          |                               |
|                                                         | 6 -                                                                      | N<br>2P+52                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |                             |                          |                               |
|                                                         | $0 = 6 \times 1^{10}$                                                    | $11 = 2\mathbf{P} + 52$                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |                             |                          |                               |
|                                                         | 0 ~ 1                                                                    | 6 = 2P + 52                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |                             |                          |                               |
|                                                         | 2                                                                        | P = 14                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |                             |                          |                               |
|                                                         |                                                                          | P = 7                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |                             |                          |                               |
| 45.                                                     | The third decile<br>a) 13<br><b>Answer:</b>                              | for the numbers b) 10                                                                                | 15, 10, 20, 25,<br>0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18, 11, 9, 12, is<br>c) 11      | :                           | d) 11.50                 | Dec-2014                      |
|                                                         | ( <b>b</b> ) Write th<br>No. of                                          | e terms in Ascen<br>terms(N) = 8                                                                     | ding order 9,10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ,11,12,15,18,20                 | ,25                         |                          |                               |
|                                                         | Third D                                                                  | Decile $D_3 = \frac{3(N+1)}{N}$                                                                      | $\frac{t^{h}}{t}$ term                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                             |                          |                               |
|                                                         |                                                                          | $=\frac{3(8+1)}{10}$                                                                                 | $\frac{1)^{th}}{term}$ term                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |                             |                          |                               |
|                                                         |                                                                          | $=2.7^{tb}$                                                                                          | <sup>1</sup> term                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                             |                          |                               |
|                                                         |                                                                          | $=2^{\mathrm{nd}}$ t                                                                                 | $term + 0.7(3^{rd} term)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $erm - 2^{nd}$ term)            |                             |                          |                               |
|                                                         |                                                                          | = 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10                                                              | + 0.7(11-10)<br>+ 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |                             |                          |                               |
| 46.                                                     | A random vari                                                            | = 10.<br>able X has unit                                                                             | form distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | on on the inter                 | rval (-3,                   | 7). The 1                | mean of the                   |
|                                                         | a) 2                                                                     | b) 4                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | c) 5                            |                             | d) 6                     |                               |

Answer:

**Central Tendency** 

#### 33.8

(a) A random variable x has uniform distribution. Given Interval (-3, 7). Mean =  $\frac{7+(-3)}{2} = \frac{7-3}{2} = \frac{4}{2} = 2$ 47. If the arithmetic mean of two numbers is 10 and the geometric mean of these numbers is 8, then the harmonic mean is : **Dec-2014** a) 9 b) 8.9 c) 6.4 d) None of these Answer: (c) Given Arithmetic Mean (A.M.) = 10(G.M.) = 8(H.M.) = ?We know that  $(G.M.)^2 = A.M. \times H.M.$  $(8)^2 = 10 \times H.M.$ H.M.  $=\frac{(8)^2}{10}=\frac{64}{10}=6.4$ 48. The harmonic mean H of two numbers is 4 and their arithmetic mean A and the geometric mean G satisfy the equation  $2A + G^2 = 27$ , then the numbers are **June-2015** b) (9, 5) d) (12, 7) a) (1, 3)c) (6, 3)Answer: (c) Let two Nos. are a & b Given Harmonic mean of two Nos. (H) = 4 $\frac{2ab}{2} = 4$ a+b 2ab = 4(a + b)ab = 2(a+b).....(1) Given  $2\dot{A} + \dot{G^2} = 27$  $2\frac{(a+b)}{2} + ab = 27$ a + b + 2(a + b) = 27a + b + 2a + 2b = 273a + 3b = 273(a + b) = 27a + b = 9.....(2) Solving equation (1) & (2) we get a = 6, b = 3**49.** Quartiles can be determined graphically using : **Dec-2015** b) Frequency polygon c) Ogive curve d) Pie chart a) Histogram 50. If the mean of two numbers is 30and geometric mean is 24 then what will be these two numbers?: **June-2016** a) 36 and 24 b) 30 and 30 c) 48 and 12 d) None of these Answer: (c) Let two number be a & b  $A.M. = \frac{a+b}{2}$  $30 = \frac{a+b}{2}$ a + b = 60 \_\_\_\_(1) G.M =  $\sqrt{ab}$  $24 = \sqrt{ab}$  $ab = 576_{(2)}$ Solving (1) & (2) we get a = 48 and b = 12**51.** For moderately skewed distribution of marks in commerce for a group of 200 students the mean marks and mode marks were found to be 55.60 and 46. What is the median marks? **Dec-**2016 (a) 55.5 (b) 60.5 (c) 52.4 (d) None of these Answer:

(c) Here Mean  $(\bar{x}) = 55.60$ 

Mode  $(M_0) = 46$ For moderately skewed distribution of marks Mode = 3 Median - 2 Mean $46 = 3 \text{ Median} - 2 \times 55.60$ 46 = 3 Median - 111.203 Median = 46 + 111.203 Median = 157.20 Median  $=\frac{157.20}{3}=52.40$ 52. The average of 10 observations is 14.4 if the average of first 4 observations is 16.5 The average of remaining 6 observations is: **Dec-2016** (a) 13.6 (b) 13.0 (c) 13.2 (d) 12.5 **Answer: (b)** Given  $n_1 = 4 n_2 = 6$  $\bar{X}_1 = 16.5$   $\bar{X}_2 = x$  (let) Combined Average  $\overline{X} = 14.4$ Combined Average  $(\bar{x}) = \frac{n_1 \bar{x}_1 + n_2 \bar{x}_2}{n_1 + n_2}$  $14.4 = \frac{4 \times 16.5 + 6 \times x}{4 \times 16.5 + 6 \times x}$  $\frac{14.4}{1} = \frac{66.0+6x}{10}$  $14.4 \times 10 = 66 + 6x$ 144 = 66 + 6x6x = 144 - 666x = 78 $x = \frac{78}{6} = 13$ 53. The ordering of a particular design of a cloth show room, a \_\_\_\_\_ size be more appropriate. **Dec-2016** (a) median (b) mean (c) mode (d) all of these 54. The geometric mean of three numbers 40,50 and x is 10. Find x **Dec-2016** (a) 5 (b) 4(c) 2(d) 1/255. The rates of returns from three different shares are 100%, 200% and 400% respectively. The average rate of return will be: **June-2017** a) 350% b) 233.33% c) 200% d) 300% Answer: (c) If given data are in the form of % then We use G.M. for average G.M. =  $(x_1 \cdot x_2 \cdot x_3)^{1/3}$  $=(100\times200\times400)^{1/3}$  $=(80,00,000)^{1/3}$  $=(200)^{3\times 1/3}$ = 200%56. If geometric mean is 6 and arithmetic mean is 6.5, then harmonic mean will be: **June-2017** a)  $6^2/6.5$ b)  $6/6.5^2$ d) None of the above. c) 6/6.5 **Answer:** (a)  $\ddot{}$  G.M = 6 A.M = 6.5 H.M =  $\frac{(G.M)^2}{A.M} = \frac{6^2}{6.5}$ 57. A company's past 10 years average earning is ₹ 40 crores. To have the same average earning for 11 years including these 10 years, how much earning must be made by the company in the 11th year? **June-2017** a) ₹ 40 crores b) ₹ 40 × 10 c) More than  $\gtrless 40$  crores d) None of the above Answer:

|                                                                                                                    | (a) Given $n_1 = 10 n_2 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 x = 40                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                    | $x_1 = 40 \ x_2 = x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $n_1\overline{x}_{1+m}$                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                               |
|                                                                                                                    | Combined mean $\bar{x}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\overline{z} = \frac{1}{n_1 + n_2 \overline{x}_2}$                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                               |
|                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0 = \frac{10 \times 40 + 1 \times x}{10 \times 40 + 1 \times x}$                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                               |
|                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10+1<br>400+x                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                               |
|                                                                                                                    | Δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $40 = \frac{11}{11}$                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                               |
|                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 40 = 400 + x                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                               |
|                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | x = 440-400                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                               |
| 50                                                                                                                 | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | x = 40 crores                                                                                                                                                                                                                                                                                                                                                                                             | 10 1°CC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (                                                                                                                                                                                                                                                                             |
| 58.                                                                                                                | A person purchases 5 rup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | pees worth of eggs fro                                                                                                                                                                                                                                                                                                                                                                                    | m 10 different marke                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ts. you are to find the                                                                                                                                                                                                                                                       |
|                                                                                                                    | average in this .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | er rupee purchased no                                                                                                                                                                                                                                                                                                                                                                                     | in an the markets take                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Iune-2017                                                                                                                                                                                                                                                                     |
|                                                                                                                    | a) A.M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | b) G.M                                                                                                                                                                                                                                                                                                                                                                                                    | c) H.M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d) None of the above                                                                                                                                                                                                                                                          |
| 59.                                                                                                                | Mean of 7, 9, 12, x, 4, 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | & 5 is 9. Find the missi                                                                                                                                                                                                                                                                                                                                                                                  | ng observation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dec-2017                                                                                                                                                                                                                                                                      |
|                                                                                                                    | (a) 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (b) 15                                                                                                                                                                                                                                                                                                                                                                                                    | (c) 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (d) None of these                                                                                                                                                                                                                                                             |
| 60.                                                                                                                | If all the frequencies are e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | qual than which will do                                                                                                                                                                                                                                                                                                                                                                                   | besn't exist:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Dec-2017                                                                                                                                                                                                                                                                      |
|                                                                                                                    | (a) Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (b) Median                                                                                                                                                                                                                                                                                                                                                                                                | (c) Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (d) None of these                                                                                                                                                                                                                                                             |
| 61.                                                                                                                | is the recip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | procal of the AM of rec                                                                                                                                                                                                                                                                                                                                                                                   | iprocal of observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | : Dec-2017                                                                                                                                                                                                                                                                    |
|                                                                                                                    | (a) HM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (b) GM                                                                                                                                                                                                                                                                                                                                                                                                    | (c) Both                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (d) None of these                                                                                                                                                                                                                                                             |
| 62.                                                                                                                | Mean deviation is least wh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ten deviations are takei                                                                                                                                                                                                                                                                                                                                                                                  | n from:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Dec-2017                                                                                                                                                                                                                                                                      |
| 63                                                                                                                 | (a) Mean<br>If the mean value of sever                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (D) Median $12 \times 12 \times 12$                                                                                                                                                                                                                                                                                                                                                                       | (c) Mode $4.11$ and 5 is 9 then                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (d) Harmonic mean<br>the missing number V                                                                                                                                                                                                                                     |
| 03.                                                                                                                | will be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | II IIUIII0CIS 7, 9, 12, A,                                                                                                                                                                                                                                                                                                                                                                                | 4, 11 and 5 18 9, then                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dec-2017                                                                                                                                                                                                                                                                      |
|                                                                                                                    | (a) 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (b) 14                                                                                                                                                                                                                                                                                                                                                                                                    | (c) 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (d) 8                                                                                                                                                                                                                                                                         |
|                                                                                                                    | Answer:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (0) 11                                                                                                                                                                                                                                                                                                                                                                                                    | (0) 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (4) 0                                                                                                                                                                                                                                                                         |
|                                                                                                                    | (c) Given observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | are                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                               |
|                                                                                                                    | 7 0 10 - 4 11 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                               |
|                                                                                                                    | 7, 9, 12, X, 4, 11, 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | )                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                               |
|                                                                                                                    | 7, 9, 12, x, 4, 11, 5<br>No. of observation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (N) = 7                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                               |
|                                                                                                                    | No. of observation<br>Sum of all observa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | f(N) = 7<br>tion $\sum x = 7 + 9 + 12 + 12$                                                                                                                                                                                                                                                                                                                                                               | - x +4 + 11 + 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                               |
|                                                                                                                    | No. of observation<br>Sum of all observa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N = 7<br>tion $\sum x = 7 + 9 + 12 + 48 + x$                                                                                                                                                                                                                                                                                                                                                              | x +4 + 11 + 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                               |
|                                                                                                                    | No. of observation<br>Sum of all observa<br>Mean $\bar{x} = \frac{\sum x}{N}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | f(N) = 7<br>tion $\sum x = 7 + 9 + 12 + 28 + x$                                                                                                                                                                                                                                                                                                                                                           | - x +4 + 11 + 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                               |
|                                                                                                                    | No. of observation<br>Sum of all observa<br>Mean $\bar{x} = \frac{\sum x}{N}$<br>$9 = \frac{48 + x}{N}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | f(N) = 7<br>tion $\sum x = 7 + 9 + 12 + 48 + x$                                                                                                                                                                                                                                                                                                                                                           | - x +4 + 11 + 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                               |
|                                                                                                                    | No. of observation<br>Sum of all observa<br>Mean $\bar{x} = \frac{\sum x}{N}$<br>$9 = \frac{48+x}{7}$<br>63 = 48 + x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | y'(N) = 7<br>tion $\sum x = 7 + 9 + 12 + 2 = 48 + x$                                                                                                                                                                                                                                                                                                                                                      | - x +4 + 11 + 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                               |
|                                                                                                                    | No. of observation<br>Sum of all observa<br>Mean $\bar{x} = \frac{\sum x}{N}$<br>$9 = \frac{48 + x}{7}$<br>63 = 48 + x<br>x = 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | y'(N) = 7<br>tion $\sum x = 7 + 9 + 12 + 2 = 48 + x$                                                                                                                                                                                                                                                                                                                                                      | - x +4 + 11 + 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                               |
| 64.                                                                                                                | 7, 9, 12, x, 4, 11, 5<br>No. of observation<br>Sum of all observa<br>$Mean \bar{x} = \frac{\sum x}{N}$ 9 = $\frac{48 + x}{7}$ 63 = 48 + x<br>x = 15<br>When all observations occ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | f(N) = 7<br>tion $\sum x = 7 + 9 + 12 + 2 = 48 + x$<br>ur with equal frequenc                                                                                                                                                                                                                                                                                                                             | • x +4 + 11 + 5<br>y does not e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | xist. <b>Dec-2017</b>                                                                                                                                                                                                                                                         |
| 64.                                                                                                                | No. of observation<br>Sum of all observa<br>$Mean \ \bar{x} = \frac{\sum x}{N}$ $9 = \frac{48 + x}{7}$ $63 = 48 + x$ $x = 15$ When all observations occ<br>(a) median                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | y'(N) = 7<br>tion $\sum x = 7 + 9 + 12 + 2 = 48 + x$<br>ur with equal frequenc<br>(b) mode                                                                                                                                                                                                                                                                                                                | $x + 4 + 11 + 5$ $y \underline{\qquad} does not exists a second $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | xist. <b>Dec-2017</b><br>(d) none of the above.                                                                                                                                                                                                                               |
| 64.<br>65.                                                                                                         | No. of observation<br>Sum of all observa<br>$Mean \ \bar{x} = \frac{\sum x}{N}$ $9 = \frac{48 + x}{7}$ $63 = 48 + x$ $x = 15$ When all observations occ<br>(a) median<br>If the variables x and z are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (N) = 7<br>tion $\sum x = 7 + 9 + 12 + 2 + 48 + x$<br>ur with equal frequenc<br>(b) mode<br>e so related that $z = ax$                                                                                                                                                                                                                                                                                    | $y = \frac{1}{(c) \text{ mean}}  does not explicitly a state of the second se$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | xist. <b>Dec-2017</b><br>(d) none of the above.<br>re a and b are constant,                                                                                                                                                                                                   |
| 64.<br>65.                                                                                                         | 7, 9, 12, x, 4, 11, 5<br>No. of observation<br>Sum of all observa<br>$Mean \bar{x} = \frac{\Sigma x}{N}$ 9 = $\frac{48 + x}{7}$ 63 = 48 + x<br>x = 15<br>When all observations occ<br>(a) median<br>If the variables x and z are<br>then $\bar{z} = a\bar{x} + b$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (N) = 7<br>tion $\sum x = 7 + 9 + 12 + 2 + 48 + x$<br>ur with equal frequenc<br>(b) mode<br>e so related that $z = ax$                                                                                                                                                                                                                                                                                    | $y = \frac{1}{(c) \text{ mean}}  does not explicitly a set of the set o$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | xist. <b>Dec-2017</b><br>(d) none of the above.<br>re a and b are constant,<br><b>May-2018</b>                                                                                                                                                                                |
| 64.<br>65.                                                                                                         | No. of observation<br>Sum of all observation<br>Sum of all observation<br>$Mean  \bar{x} = \frac{\sum x}{N}$ $9 = \frac{48 + x}{7}$ $63 = 48 + x$ $x = 15$ When all observations occ<br>(a) median<br>If the variables x and z are<br>then $\bar{z} = a\bar{x} + b$<br>(a) True                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (N) = 7<br>tion $\sum x = 7 + 9 + 12 + 2 + 48 + x$<br>ur with equal frequenc<br>(b) mode<br>e so related that $z = ax$<br>(b) false                                                                                                                                                                                                                                                                       | $y = \frac{1}{(c) \text{ mean}} \text{ does not exp}$<br>(c) mean $x = x, \text{ when } (c) \text{ both } (c$ | xist. <b>Dec-2017</b><br>(d) none of the above.<br>re a and b are constant,<br><b>May-2018</b><br>(d) none                                                                                                                                                                    |
| <ul><li>64.</li><li>65.</li><li>66.</li></ul>                                                                      | No. of observation<br>Sum of all observation<br>Sum of all observation<br>$Mean \bar{x} = \frac{\Sigma x}{N}$ $9 = \frac{48 + x}{7}$ $63 = 48 + x$ $x = 15$ When all observations occ<br>(a) median<br>If the variables x and z are<br>then $\bar{z} = a\bar{x} + b$<br>(a) True<br>Relation between mean, m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (N) = 7<br>tion $\sum x = 7 + 9 + 12 + 2 + 2 + 2 + 2 + 2 + 3 + 3 + 3 + 3 + $                                                                                                                                                                                                                                                                                                                              | $y = \frac{1}{(c) \text{ mean}} \text{ does not end}$<br>+b for each x = x, when<br>(c) both                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | xist. <b>Dec-2017</b><br>(d) none of the above.<br>re a and b are constant,<br><b>May-2018</b><br>(d) none<br><b>May-2018</b>                                                                                                                                                 |
| 64.<br>65.<br>66.                                                                                                  | No. of observation<br>Sum of all observation<br>Sum of all observation<br>$Mean \bar{x} = \frac{\sum x}{N}$ $9 = \frac{48 + x}{7}$ $63 = 48 + x$ $x = 15$ When all observations occ<br>(a) median<br>If the variables x and z are<br>then $\bar{z} = a\bar{x} + b$<br>(a) True<br>Relation between mean, m<br>(a) mean-mode = 2 (mean-<br>(a) median = 2 (mean-<br>(b) mean median = 2 (mean-<br>(c) mean mean mean mean mean mean mean mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (N) = 7<br>tion $\sum x = 7 + 9 + 12 + 2 + 48 + x$<br>ur with equal frequenc<br>(b) mode<br>e so related that $z = ax^{-1}$<br>(b) false<br>median and mode is<br>-median)<br>n mode)                                                                                                                                                                                                                     | $y = \frac{1}{(c) \text{ mean}} \text{ does not exp}$ $(c) \text{ mean} x = x, \text{ whe}$ $(c) \text{ both}$ $(b) \text{ mean-median} = 3$ $(d) \text{ mean} \text{ mode} = 3(n)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | xist. <b>Dec-2017</b><br>(d) none of the above.<br>re a and b are constant,<br><b>May-2018</b><br>(d) none<br><b>May-2018</b><br>(mean-mode)                                                                                                                                  |
| <ul><li>64.</li><li>65.</li><li>66.</li></ul>                                                                      | No. of observation<br>Sum of all observa<br>$Mean \bar{x} = \frac{\sum x}{N}$ $9 = \frac{48 + x}{7}$ $63 = 48 + x$ $x = 15$ When all observations occ<br>(a) median<br>If the variables x and z are<br>then $\bar{z} = a\bar{x} + b$<br>(a) True<br>Relation between mean, m<br>(a) mean-mode = 2 (mean-<br>(c) mean-median = 2 (mean-<br>If each item is reduced by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (N) = 7<br>tion $\sum x = 7 + 9 + 12 + 2 + 2 + 48 + x$<br>ur with equal frequence<br>(b) mode<br>e so related that $z = ax^{-1}$<br>(b) false<br>median and mode is<br>-median)<br>n-mode)<br>15 A M is                                                                                                                                                                                                   | $y = \frac{1}{(c) \text{ mean}} \text{ does not expected on } x + 4 + 11 + 5$ $y = \frac{1}{(c) \text{ mean}} \text{ does not expected on } x = x, \text{ when } x = x, \text$                                                                                                        | xist. Dec-2017<br>(d) none of the above.<br>re a and b are constant,<br>May-2018<br>(d) none<br>May-2018<br>(mean-mode)<br>nean-median)<br>May-2018                                                                                                                           |
| <ul><li>64.</li><li>65.</li><li>66.</li><li>67.</li></ul>                                                          | No. of observation<br>Sum of all observation<br>Sum of all observation<br>$Mean \bar{x} = \frac{\sum x}{N}$ $9 = \frac{48 + x}{7}$ $63 = 48 + x$ $x = 15$ When all observations occ<br>(a) median<br>If the variables x and z are<br>then $\bar{z} = a\bar{x} + b$<br>(a) True<br>Relation between mean, m<br>(a) mean-mode = 2 (mean-<br>(c) mean-median = 2 (mean-<br>If each item is reduced by<br>(a) reduced by 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (N) = 7<br>tion $\sum x = 7 + 9 + 12 + 2 + 48 + x$<br>ur with equal frequence<br>(b) mode<br>e so related that $z = ax^{-1}$<br>(b) false<br>median and mode is<br>-median)<br>m-mode)<br>15 A. M is<br>(b) increased by 15                                                                                                                                                                               | x + 4 + 11 + 5<br>y <u>does not ex</u><br>(c) mean<br>+b for each x = x, whe<br>(c) both<br>(b) mean-median = 3<br>(d) mean-mode = 3(n<br>(c) reduced by 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | xist. Dec-2017<br>(d) none of the above.<br>re a and b are constant,<br>May-2018<br>(d) none<br>May-2018<br>(mean-mode)<br>nean-median)<br>May-2018<br>(d) none                                                                                                               |
| <ul> <li>64.</li> <li>65.</li> <li>66.</li> <li>67.</li> <li>68.</li> </ul>                                        | No. of observation<br>Sum of all observa<br>$Mean \bar{x} = \frac{\sum x}{N}$ $9 = \frac{48 + x}{7}$ $63 = 48 + x$ $x = 15$ When all observations occ<br>(a) median<br>If the variables x and z are<br>then $\bar{z} = a\bar{x} + b$<br>(a) True<br>Relation between mean, m<br>(a) mean-mode = 2 (mean-<br>(c) mean-median = 2 (mean-<br>(c) mean-mean-<br>(c)                 | (N) = 7<br>tion $\sum x = 7 + 9 + 12 + 2 + 48 + x$<br>ur with equal frequenc<br>(b) mode<br>e so related that $z = ax^{-1}$<br>(b) false<br>median and mode is<br>median)<br>n-mode)<br>15 A. M is<br>(b) increased by 15<br>00, 480, 485, 760, 111,                                                                                                                                                      | $x + 4 + 11 + 5$ $y \_ does not exists a constraint of the second second$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | xist. Dec-2017<br>(d) none of the above.<br>re a and b are constant,<br>May-2018<br>(d) none<br>May-2018<br>(mean-mode)<br>nean-median)<br>May-2018<br>(d) none<br>May-2018                                                                                                   |
| <ul><li>64.</li><li>65.</li><li>66.</li><li>67.</li><li>68.</li></ul>                                              | No. of observation<br>Sum of all observa<br>$Mean \bar{x} = \frac{\sum x}{N}$ $9 = \frac{48 + x}{7}$ $63 = 48 + x$ $x = 15$ When all observations occ<br>(a) median<br>If the variables x and z are<br>then $\bar{z} = a\bar{x} + b$<br>(a) True<br>Relation between mean, m<br>(a) mean-mode = 2 (mean-<br>(c) mean-median = 2 (mean-<br>(c) mean-mean-<br>(c) mean-<br>(c) m | (N) = 7<br>tion $\sum x = 7 + 9 + 12 + 248 + x$<br>ur with equal frequence<br>(b) mode<br>e so related that $z = ax^{-1}$<br>(b) false<br>median and mode is<br>-median)<br>m-mode)<br>15 A. M is<br>(b) increased by 15<br>00, 480, 485, 760, 111,<br>(b) 5.5                                                                                                                                            | x + 4 + 11 + 5<br>y does not ex<br>(c) mean<br>+b for each x = x, whe<br>(c) both<br>(b) mean-median = 3<br>(d) mean-mode = 3(n<br>(c) reduced by 10<br>240 Rank of median is<br>(c) 8.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | xist. Dec-2017<br>(d) none of the above.<br>re a and b are constant,<br>May-2018<br>(d) none<br>May-2018<br>(mean-mode)<br>nean-median)<br>May-2018<br>(d) none<br>May-2018<br>(d) none                                                                                       |
| <ul> <li>64.</li> <li>65.</li> <li>66.</li> <li>67.</li> <li>68.</li> <li>69.</li> </ul>                           | No. of observation<br>Sum of all observa<br>$Mean \bar{x} = \frac{\sum x}{N}$ $9 = \frac{48 + x}{7}$ $63 = 48 + x$ $x = 15$ When all observations occ<br>(a) median<br>If the variables x and z are<br>then $\bar{z} = a\bar{x} + b$<br>(a) True<br>Relation between mean, m<br>(a) mean-mode = 2 (mean-<br>(c) mean-median = 2 (mean-<br>(c) mean-mean-<br>(c) mean-<br>(c) mean- | (N) = 7<br>(N) = 7<br>tion $\sum x = 7 + 9 + 12 + 2 + 48 + x$<br>ur with equal frequence<br>(b) mode<br>e so related that $z = ax^{-1}$<br>(b) false<br>median and mode is<br>median)<br>n-mode)<br>15 A. M is<br>(b) increased by 15<br>00, 480, 485, 760, 111,<br>(b) 5.5<br>6, 7, 8, 9, 10, 11, 12, 12                                                                                                 | x + 4 + 11 + 5<br>y does not exactly does not exa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | xist. Dec-2017<br>(d) none of the above.<br>re a and b are constant,<br>May-2018<br>(d) none<br>May-2018<br>(mean-mode)<br>nean-median)<br>May-2018<br>(d) none<br>May-2018<br>(d) none<br>May-2018                                                                           |
| <ul> <li>64.</li> <li>65.</li> <li>66.</li> <li>67.</li> <li>68.</li> <li>69.</li> </ul>                           | No. of observation<br>Sum of all observa<br>$Mean \bar{x} = \frac{\sum x}{N}$ $9 = \frac{48 + x}{7}$ $63 = 48 + x$ $x = 15$ When all observations occ<br>(a) median<br>If the variables x and z are<br>then $\bar{z} = a\bar{x} + b$<br>(a) True<br>Relation between mean, m<br>(a) mean-mode = 2 (mean-<br>(c) mean-median = 2 (mean-<br>(c) mean-mean-<br>(c) mean-mean-<br>(c) mean-mean-mean-<br>(c) mean-mean-mean-<br>(c) mean-mean-mean-<br>(c) mean-mean-mean-<br>(c) mean-mean-<br>(c) mean-mean-                                  | (N) = 7<br>tion $\sum x = 7 + 9 + 12 + 2 + 24 + 34 + 34 + 34 + 34 + 34 + 34$                                                                                                                                                                                                                                                                                                                              | y does not ex<br>(c) mean<br>+b for each $x = x$ , whe<br>(c) both<br>(b) mean-median = 3<br>(d) mean-mode = 3(n<br>(c) reduced by 10<br>240 Rank of median is<br>(c) 8.25<br>5, 18, 18 and 19 is<br>(c) 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | xist. Dec-2017<br>(d) none of the above.<br>re a and b are constant,<br>May-2018<br>(d) none<br>May-2018<br>(mean-mode)<br>nean-median)<br>(d) none<br>May-2018<br>(d) none<br>May-2018<br>(d) none<br>May-2018<br>(d) none<br>May-2018<br>(d) none                           |
| <ul> <li>64.</li> <li>65.</li> <li>66.</li> <li>67.</li> <li>68.</li> <li>69.</li> <li>70.</li> </ul>              | No. of observation<br>Sum of all observa<br>$Mean \bar{x} = \frac{\sum x}{N}$ $9 = \frac{48 + x}{7}$ $63 = 48 + x$ $x = 15$ When all observations occ<br>(a) median<br>If the variables x and z are<br>then $\bar{z} = a\bar{x} + b$<br>(a) True<br>Relation between mean, m<br>(a) mean-mode = 2 (mean-<br>(c) mean-median = 2 (mean-<br>(c) mean-mean-mean-<br>(c) mean-mean-mean-mean-<br>(c) mean-mean-mean-mean-<br>(c) mean-mean-mean-mean-<br>(c) mean-mean-mean-mean-mean-<br>(c) mean-mean-mean-mea                                                   | (N) = 7<br>tion $\sum x = 7 + 9 + 12 + 24 + 24 + 34 + 34 + 34 + 34 + 34 + 3$                                                                                                                                                                                                                                                                                                                              | y <u>does</u> not end<br>(c) mean<br>+b for each $x = x$ , whe<br>(c) both<br>(b) mean-median = 3<br>(d) mean-mode = 3(n)<br>(c) reduced by 10<br>240 Rank of median is<br>(c) 8.25<br>5, 18, 18 and 19 is<br>(c) 11<br>em is multiplied by 3,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | xist. <b>Dec-2017</b><br>(d) none of the above.<br>re a and b are constant,<br><b>May-2018</b><br>(d) none<br>May-2018<br>(mean-mode)<br>nean-median)<br>(d) none<br>May-2018<br>(d) none<br>May-2018<br>(d) none<br>May-2018<br>(d) none<br>May-2018<br>(d) none<br>(d) none |
| <ul> <li>64.</li> <li>65.</li> <li>66.</li> <li>67.</li> <li>68.</li> <li>69.</li> <li>70.</li> </ul>              | No. of observation<br>Sum of all observa<br>$Mean \bar{x} = \frac{\sum x}{N}$ $9 = \frac{48 + x}{7}$ $63 = 48 + x$ $x = 15$ When all observations occ<br>(a) median<br>If the variables x and z are<br>then $\bar{z} = a\bar{x} + b$<br>(a) True<br>Relation between mean, m<br>(a) mean-mode = 2 (mean-<br>(c) mean-median = 2 (mean-<br>(c) mean-median = 2 (mean-<br>If each item is reduced by<br>(a) reduced by 15<br>For 899, 999, 391, 384, 39<br>(a) 2.75<br>The median of the date 5, 4<br>(a) 10.5<br>The mean of 20 items of a<br>be Nov-2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (N) = 7<br>tion $\sum x = 7 + 9 + 12 + 2 + 48 + x$<br>ur with equal frequence<br>(b) mode<br>e so related that $z = ax^{-1}$<br>(b) false<br>median and mode is<br>-median)<br>m-mode)<br>15 A. M is<br>(b) increased by 15<br>15 A. M is<br>(b) increased by 15<br>15 A. M is<br>(b) increased by 15<br>15 A. M is<br>(c) 10<br>data is 5 and if each it                                                 | y does not ex<br>(c) mean<br>+b for each $x = x$ , whe<br>(c) both<br>(b) mean-median = 3<br>(d) mean-mode = 3(n<br>(c) reduced by 10<br>240 Rank of median is<br>(c) 8.25<br>5, 18, 18 and 19 is<br>(c) 11<br>em is multiplied by 3,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | xist. Dec-2017<br>(d) none of the above.<br>re a and b are constant,<br>May-2018<br>(d) none May-2018<br>(mean-mode)<br>nean-median)<br>(d) none May-2018<br>(d) none May-2018<br>(d) none Nov-2018<br>(d) 11.5<br>then the new mean will                                     |
| <ul> <li>64.</li> <li>65.</li> <li>66.</li> <li>67.</li> <li>68.</li> <li>69.</li> <li>70.</li> </ul>              | No. of observation<br>Sum of all observa<br>$Mean \bar{x} = \frac{\sum x}{N}$ $9 = \frac{48 + x}{7}$ $63 = 48 + x$ $x = 15$ When all observations occ<br>(a) median<br>If the variables x and z are<br>then $\bar{z} = a\bar{x} + b$<br>(a) True<br>Relation between mean, m<br>(a) mean-mode = 2 (mean-<br>(c) mean-median = 2 (mean-<br>(c) mean-mean-mean-<br>(c) mean-mean-mean-                                                 | (N) = 7<br>tion $\sum x = 7 + 9 + 12 + = 48 + x$<br>ur with equal frequence<br>(b) mode<br>e so related that $z = ax^{-1}$<br>(b) false<br>median and mode is<br>median)<br>n-mode)<br>15 A. M is<br>(b) increased by 15<br>90, 480, 485, 760, 111,<br>(b) 5.5<br>6, 7, 8, 9, 10, 11, 12, 12<br>(b) 10<br>data is 5 and if each it<br>(b) 10                                                              | x + 4 + 11 + 5<br>y does not ex<br>(c) mean<br>+b for each x = x, whe<br>(c) both<br>(b) mean-median = 3<br>(d) mean-mode = 3(n<br>(c) reduced by 10<br>240 Rank of median is<br>(c) 8.25<br>5, 18, 18 and 19 is<br>(c) 11<br>em is multiplied by 3,<br>(c) 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | xist. Dec-2017<br>(d) none of the above.<br>re a and b are constant,<br>May-2018<br>(d) none<br>May-2018<br>(d) none<br>May-2018<br>(d) none<br>May-2018<br>(d) none<br>May-2018<br>(d) none<br>Nov-2018<br>(d) 11.5<br>then the new mean will<br>(d) 20                      |
| <ul> <li>64.</li> <li>65.</li> <li>66.</li> <li>67.</li> <li>68.</li> <li>69.</li> <li>70.</li> <li>71.</li> </ul> | No. of observation<br>Sum of all observa<br>$Mean \bar{x} = \frac{\sum x}{N}$ $9 = \frac{48 + x}{7}$ $63 = 48 + x$ $x = 15$ When all observations occ<br>(a) median<br>If the variables x and z are<br>then $\bar{z} = a\bar{x} + b$<br>(a) True<br>Relation between mean, m<br>(a) mean-mode = 2 (mean-<br>(c) mean-median = 2 (mean-<br>(c) mean-mean-mean-<br>(c) mean-mean-mean-                                                 | (N) = 7<br>tion $\sum x = 7 + 9 + 12 + = 48 + x$<br>ur with equal frequence<br>(b) mode<br>e so related that $z = ax$<br>(b) false<br>median and mode is<br>median)<br>n-mode)<br>15 A. M is<br>(b) increased by 15<br>15 A. M is<br>(b) increased by 15<br>10, 480, 485, 760, 111,<br>(b) 5.5<br>6, 7, 8, 9, 10, 11, 12, 13<br>(b) 10<br>data is 5 and if each it<br>(b) 10<br>6, 24 and 48 is<br>(b) 12 | y does not e<br>(c) mean<br>+b for each $x = x$ , whe<br>(c) both<br>(b) mean-median = 3<br>(d) mean-mode = 3(n<br>(c) reduced by 10<br>240 Rank of median is<br>(c) 8.25<br>5, 18, 18 and 19 is<br>(c) 11<br>em is multiplied by 3,<br>(c) 15<br>(a) 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | xist. Dec-2017<br>(d) none of the above.<br>re a and b are constant,<br>May-2018<br>(d) none<br>May-2018<br>(d) none<br>May-2018<br>(d) none<br>May-2018<br>(d) none<br>May-2018<br>(d) none<br>Nov-2018<br>(d) 11.5<br>then the new mean will<br>(d) 20<br>Nov-2018<br>(d) 6 |

| <b>Central Tendency</b> |
|-------------------------|
|-------------------------|

|     | Answer:                                                                                                                                    |                                                                                                       | 14                       |                   |                     |                      |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------|-------------------|---------------------|----------------------|--|
|     | <b>(b)</b> G.M.                                                                                                                            | $A. = (x_1 \cdot x_2 \cdot x_3 \cdot x_4)^{1/4}$                                                      |                          |                   |                     |                      |  |
|     |                                                                                                                                            | $= (3 \times 6 \times 24 \times 48)^{-1}$                                                             |                          |                   |                     |                      |  |
|     | $= 4\sqrt{3 \times 6 \times 24 \times 46}$ $= 43 \times 3 \times 2 \times 2 \times 2 \times 2 \times 3 \times 2 \times 2 \times 2 \times $ |                                                                                                       |                          |                   |                     |                      |  |
|     |                                                                                                                                            |                                                                                                       |                          |                   |                     |                      |  |
|     |                                                                                                                                            | $= 4\sqrt{2} \times 2 \times$ | 2 ~ 2 ~ 2 ~ 2            | ×                 | 0 × 0               |                      |  |
|     |                                                                                                                                            | = 12                                                                                                  |                          |                   |                     |                      |  |
| 72. | Which one of                                                                                                                               | the following is no                                                                                   | ot a central tend        | lency?            |                     | Nov-2018             |  |
|     | (a) Mean Dev                                                                                                                               | tiation (b)                                                                                           | Arithmetic mean          | n (c) Median      | (d) Mo              | de                   |  |
| 73. | If total frequ                                                                                                                             | encies of three se                                                                                    | eries are 50, 60         | ) and 90 and t    | heir means are      | 12, 15 and 20        |  |
|     | respectively, t                                                                                                                            | then the mean of th                                                                                   | their composite s        | series is         | (4) 1               | Nov-2018             |  |
| 74  | $\begin{array}{c} (a) \ 10 \\ \text{If in a mode} \end{array}$                                                                             | (D)<br>in herved, vice                                                                                | 13.3<br>Stribution the x | (C) 10.5          | (0) 14              | 4.5<br>32.1 and 35.4 |  |
| /4. | respectively f                                                                                                                             | then the value of the                                                                                 | ne median is             | anues of mode     | and mean are        | Nov-2018             |  |
|     | (a) 34.3                                                                                                                                   | (b) 3                                                                                                 | 33.3                     | (c) 34            | (d) 33              |                      |  |
|     | Answer:                                                                                                                                    |                                                                                                       |                          |                   |                     |                      |  |
|     | (a) Giver                                                                                                                                  | n:                                                                                                    |                          |                   |                     |                      |  |
|     |                                                                                                                                            | Mode = $32.1$ , M                                                                                     | edian = ?                |                   |                     |                      |  |
|     |                                                                                                                                            | Mean = 35.4                                                                                           | <u></u>                  |                   |                     |                      |  |
|     |                                                                                                                                            | Mode = 3 Media                                                                                        | n - 2 Mean               |                   |                     |                      |  |
|     |                                                                                                                                            | 32.1 = 3 Media                                                                                        | $an = 2 \times 33.4$     |                   |                     |                      |  |
|     |                                                                                                                                            | $32.1^{\circ} = 5$ Wedian = $32.1^{\circ}$                                                            | 1+70.8                   |                   |                     |                      |  |
|     |                                                                                                                                            | 3  Median = 102                                                                                       | 2.9                      |                   |                     |                      |  |
|     |                                                                                                                                            | Median = $\frac{102.9}{102.9}$                                                                        | = 34.3                   |                   |                     |                      |  |
| 75. | If the mean of                                                                                                                             | 3<br>f the following dist                                                                             | ribution is 6 the        | en the value of F | Pis                 | Nov-2018             |  |
|     | X:                                                                                                                                         | 2                                                                                                     | 4                        | 6                 | 10                  | P+5                  |  |
|     | F:                                                                                                                                         | 3                                                                                                     | 2                        | 3                 | 1                   | 2                    |  |
|     | (a) 7                                                                                                                                      | (b) 5                                                                                                 | 5                        | (c) 8             | (d) 11              |                      |  |
|     | Answer:                                                                                                                                    |                                                                                                       |                          |                   |                     |                      |  |
|     | (a)                                                                                                                                        |                                                                                                       |                          |                   |                     |                      |  |
|     |                                                                                                                                            | Х                                                                                                     | f                        |                   | f.x.                |                      |  |
|     |                                                                                                                                            | 2                                                                                                     | 3                        |                   | 6                   |                      |  |
|     |                                                                                                                                            | 4                                                                                                     | 2                        |                   | 8                   |                      |  |
|     |                                                                                                                                            | 6                                                                                                     | 3                        |                   | 18                  |                      |  |
|     | 10                                                                                                                                         |                                                                                                       | 1                        |                   | 10                  |                      |  |
|     | P+5                                                                                                                                        |                                                                                                       | 2                        |                   | 2P+10               |                      |  |
|     |                                                                                                                                            |                                                                                                       | N=11                     | $\sum$            | $\sum fx = 2P + 52$ |                      |  |
|     | ∑fr 2D⊥                                                                                                                                    | .52                                                                                                   |                          |                   |                     |                      |  |
|     | $\bar{x} = \frac{21}{N} = \frac{21}{11}$                                                                                                   | <u> </u>                                                                                              |                          |                   |                     |                      |  |
|     | C                                                                                                                                          | Biven:                                                                                                |                          |                   |                     |                      |  |
|     |                                                                                                                                            | $\overline{x} = 6$                                                                                    |                          |                   |                     |                      |  |

$$x = 0$$

$$\frac{6}{1} = \frac{2P+52}{11}$$

$$2P + 52 = 66$$

$$2P = 66-52$$

$$2P = 14$$

$$P = 7$$

| Central | Tendency                      |                                        |                       | 33.12              |                    |                                      | GOPAL BHOOT                 | Г |
|---------|-------------------------------|----------------------------------------|-----------------------|--------------------|--------------------|--------------------------------------|-----------------------------|---|
| 76.     | The AM of remaining C         | 15 Observations is                     | on is 9 and           | the AM of          | f first 9 Observa  | tion is 11 and                       | then AM of <b>June-2019</b> |   |
|         | (a) 11                        |                                        | (b) 6                 |                    | (c) 5              | (d) 9                                |                             |   |
|         | Answer:                       |                                        |                       |                    |                    |                                      |                             |   |
|         | <b>(b</b> )                   | A.M of 15 ol                           | bservations           | = 9                |                    |                                      |                             |   |
|         |                               | Sum of 15 ob                           | servations =          | = 9×15             |                    |                                      |                             |   |
|         |                               | A M of 9 ob                            | –<br>servations –     | 155                |                    |                                      |                             |   |
|         |                               | Sum of 9 ob                            | servations =          | 11×9               |                    |                                      |                             |   |
|         |                               |                                        | =                     | 99                 |                    |                                      |                             |   |
|         |                               | Sum of rema                            | aining 6 obse         | rvations =         | 135 – 99           |                                      |                             |   |
|         |                               |                                        |                       | =                  | = 36               |                                      |                             |   |
|         |                               | Average of                             | 6 observation         | $1 = \frac{36}{6}$ |                    |                                      |                             |   |
| 77.     | In a modera<br>The value o    | ately Skewed of f mode is              | listribution th       | ne values o        | of means & medi    | an are 12 & 8                        | respectively.<br>June-2019  |   |
|         | (a) 0                         |                                        | (b) 12                |                    | (c) 15             | (d) 30                               |                             |   |
|         | Answer:                       |                                        |                       |                    |                    |                                      |                             |   |
|         | ( <b>a</b> ) G1               | ven, $M_{aan} = 17$                    | <b>,</b>              |                    |                    |                                      |                             |   |
|         |                               | Median –                               | 8                     |                    |                    |                                      |                             |   |
|         |                               | Mode $= 3$                             | Median – 2 M          | Mean               |                    |                                      |                             |   |
|         |                               | = 3                                    | ×8 - 2×12             |                    |                    |                                      |                             |   |
|         |                               | = 2                                    | 4 - 24                |                    |                    |                                      |                             |   |
| 70      | <b>XX71 * 1 C (1</b>          | =0                                     | ·.· 1                 | 0                  |                    |                                      | T 2010                      |   |
| 78.     | Which of th                   | e following is                         | (b) <b>GM</b>         | erage ?            |                    | $(\mathbf{A}) \mathbf{A} \mathbf{M}$ | June-2019                   |   |
| 79.     | For a symm                    | etric distributio                      | (U) GM                |                    |                    | (u) AM                               | June-2019                   |   |
| 12.     | (a) Mean $=$                  | Median = Mod                           | le(b) Mode =          | 3 Median           | - 2 Mean           |                                      | June 2017                   |   |
|         | (c) Mode =                    | $\frac{1}{2}$ Median = $\frac{1}{2}$ M | Aean                  |                    | (d) None           |                                      |                             |   |
| 80.     | For the dist                  | 3 2<br>ribution                        |                       |                    |                    |                                      | June-2019                   |   |
| 000     | X:                            | 1                                      | 2                     | 3                  | 4                  | 5                                    | 6                           |   |
|         | F:                            | 6                                      | 9                     | 10                 | 14                 | 12                                   | 8                           |   |
|         | The value o                   | f median is                            |                       |                    |                    |                                      |                             |   |
|         | (a) 3.5                       |                                        | (b) 3                 |                    | (c) 4              | (d) 5                                |                             |   |
|         | Answer:                       |                                        |                       |                    |                    |                                      |                             |   |
|         | (C)                           | 1 2                                    | 3 1                   | 5 6                | Г                  |                                      |                             |   |
|         |                               | 6 9 1                                  | 10 14 ·               | 12 8               |                    |                                      |                             |   |
|         | C.F                           | 6 15 2                                 | 25 39 5               | 51 59              | N = 59             |                                      |                             |   |
|         |                               |                                        |                       |                    |                    |                                      |                             |   |
|         |                               |                                        |                       |                    |                    |                                      |                             |   |
|         | Media                         | $n(Me) = \left(\frac{N+1}{2}\right)$   | $()^{\text{th}}$ term |                    |                    |                                      |                             |   |
|         | $-\left(\frac{59+}{5}\right)$ | (1) <sup>th</sup> term                 | /                     |                    |                    |                                      |                             |   |
|         | -(2)                          | h torm                                 |                       |                    |                    |                                      |                             |   |
|         | $= 30^{-1}$                   | term                                   |                       |                    |                    |                                      |                             |   |
| 81.     | If the AM &                   | k GM of two m                          | umbers are 30         | 0 and 24 re        | spectively. Find t | the no.'s.                           |                             |   |
|         | Nov-2019                      |                                        |                       | 5 unu 2 i IV       |                    |                                      |                             |   |
|         | (a) 12 and 2                  | 4                                      | (b) 48 and 1          | 12                 | (c) 30 and 30      | (d) 40 an                            | d 20                        |   |
|         | Answer:                       |                                        |                       |                    |                    |                                      |                             |   |
|         | ( <b>b</b> ) Le               | t the two no.'s                        | be a and b            |                    |                    |                                      |                             |   |
|         | A                             | M = 30                                 |                       | GM = 24            |                    |                                      |                             |   |
|         | <u>u</u>                      | $\frac{15}{2} = 30$                    |                       | $\sqrt{ab} = 24$   |                    | (-2)                                 |                             |   |

a + b = 60a = 60 - b(-1) Put Eq 1 in Eq 2  $\sqrt{(60-b)b} = 24$ On squaring both sides (60-b)b = 576 $60b - b^2 = 576$  $b^2 - 60b + 576 = 0$  $b^2 - 48b - 12b + 576 = 0$ b(b-48) - 12(b-48) = 0(b - 12) (b - 48) = 0b = 12 b = 48 or a = 60 - 12a = 60 - 48a = 48 a = 12 (12, 48)or (48, 12)So the two no.'s are 48 and 12 # After Method [Do by hit and trial] i.e. Try with the given options whether their AM is 30 and GM 24 82. Find mode of the following date **Nov-2019** 6-9 9-12 12 - 153 - 615 - 1818 - 215 10 23 12 2 21 (a) 25 (b) 4.6 (c) 14.6 (d) 13.5 **Answer:** (c) CI f 2 3 - 6 6-9 5 9-12 10 12-15 23 \*Modal Class 15 - 18 21 18 - 21 12 Since 23 is the highest frequency, so 12 - 15 is the modal class. So,  $f_1 = 23$ ,  $f_0 = 10$ ,  $f_2 = 21$  $L_1 = 12$ i = 3 Mode = L<sub>1</sub> +  $\frac{f_1 - f_0}{f_1^2 - f_0 - f_2} \times i$ = 12 +  $\frac{23 - 10}{2(23) - 10 - 21} \times 3$  $= 12 + \frac{13}{15} \times 3$ = 12 + 2.599= 14.59 = 14.6 (approx) 83. Histogram is used to represent **Nov-2019** (a) Mode (b) Median (c) Percentile (d) Quartile **84.** Find the median of the following: Nov-2019 0 - 10 CI 10 - 2020 - 3030 - 4040 - 50f 2 4 5 6 3 (a) 35 (b) 32 (c) 36 (d) 37.5

Answer: (b)

| CI      | f | c.f. |
|---------|---|------|
| 0 - 10  | 2 | 2    |
| 10 - 20 | 3 | 5    |
| 20 - 30 | 4 | 9    |
| *30-40  | 5 | 14   |
| 40 - 50 | 6 | 20   |

Nov-2019

$$\sum f=20$$

 $\frac{N}{2} = 10$ N = 20So 30 - 40 is the median class  $L_{,} = 30 C \Rightarrow$  Pre. Cof. of median class C => 9 F => 5Median =  $L_1 + \frac{(N/2-C)}{f} \times i$ =  $30 + \frac{(10-9)}{5} \times 10$ = 30 + 2

= 32

**85.** Find the mode of the following:

| Find the mode of | of the following: |         |           |         | Nov-2019 |
|------------------|-------------------|---------|-----------|---------|----------|
| 0-10             | 10 - 20           | 20 - 30 | 30 - 40   | 40 - 50 | 50 - 60  |
| 7                | 14                | 22      | 34        | 20      | 19       |
| (a) 32           | (b)               | 34.61   | (c) 25.42 | (d) 35  |          |

Answer:

**(b)** 

| CI      | f  |
|---------|----|
| 0 – 10  | 7  |
| 10 - 20 | 14 |
| 20 - 30 | 22 |
| *30 -40 | 34 |
| 40 - 50 | 20 |
| 50 - 60 | 19 |
|         |    |

Since 34 is the highest frequency so, 30 - 40 is the modal class

 $f_1 = 34 \ f_0 = 22 \ f_2 = 20$ i = 10 Mode =  $L_1 + \frac{f_1 - f_0 \times i}{2f_1 - f_0 - f_2}$ =  $30 + \frac{(34 - 22)}{2 \times 34 - 22 - 20} \times 10$ =  $30 + \frac{12}{26} \times 10$ = 34.61

86.  $\sum_{i=1}^{n} \left( \overline{x} - x_i \right)$  is equal to

(a) 
$$\overline{x} \sum_{i=1}^{n} x_i$$
 (b)  $n\left(\overline{x} \sum_{i=1}^{n} x_i\right)$  (c)  $\overline{x} - n \overline{x}$  (d) Zero

**Answer:** 

(**d**)  $\sum_{i=1}^{n} (\bar{x} - x_i) = 0$ 

Since the sum of deviations about their AM is always zero.

87. Given the weights for the numbers 1, 2, 3... n are respectively  $1^2$ ,  $2^2$ ,  $3^2$  .... N<sup>2</sup> then weighted HM is  $_{2n+1}$ Nov – 2020 (b)  $\frac{2n+1}{6}$  (c)  $\frac{2n+1}{3}$ (d)  $\frac{2n+1}{2}$ 

(a) 
$$\frac{2n+1}{4}$$

**Answer:** 

(c) Weight => f

Here

| Х | f       | f/x         |
|---|---------|-------------|
| 1 | $1^{2}$ | $1^2/1=1$   |
| 2 | $2^{2}$ | $2^{2}/2=2$ |
| 3 | $3^{2}$ | $3^2/3=3$   |

### **Central Tendency**

|            |                                        | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $4^{2}$                                | 1                               | ]                      |
|------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------|------------------------|
|            |                                        | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $n^2$                                  | $n^2/n = n$                     |                        |
|            |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $N = \sum n^2$                         | $\sum (f/x) = \sum n$           |                        |
|            |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        | $\sum_{n=1}^{n} \sum_{k=1}^{n}$ | ]                      |
|            | H.m. $=\frac{N}{\Sigma(f/x)}$          | $= \frac{\sum n^2}{\sum n}$ $= \frac{\frac{x(n+1)(2n+1)}{6}}{\frac{n(n+1)}{2}}$ $= \frac{(2n+1)}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |                                 |                        |
| 88.        | Which measure                          | is suitable for open- en                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | d classification?                      |                                 | Nov – 2020             |
|            | (a) Median                             | (b) Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (c) Mode                               | (d) GM                          |                        |
|            | Answer:                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |                                 |                        |
|            | (a) For ope                            | en-end classification m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | edian is suitable.                     |                                 |                        |
| <b>89.</b> | 50 <sup>th</sup> Percentile is         | s equal to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |                                 | Nov – 2020             |
|            | (a) Median                             | (b) Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (c) Mean                               | (d) None                        |                        |
|            | Answer:                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |                                 |                        |
|            | (a) $P_{50} = \frac{50}{2}$            | $\frac{D(n+1)}{100}$ = median                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |                                 |                        |
| 90.        | The harmonic m                         | nean A and B is 1/3 and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | d harmonic mean of C                   | and D is 1/5. The hard          | monic mean             |
|            | of ABCD is                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |                                 | Nov – 2020             |
|            | (a) 8/15                               | (b) ¼                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (c) 1/15                               | (d) 5/3                         |                        |
|            | Answer:                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                 |                        |
|            | (b) Here, H                            | H.M. of A and B = $\frac{1}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |                                 |                        |
|            | J                                      | H.M. of C and D = $\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |                                 |                        |
|            |                                        | $IIM of A and D = \frac{5}{N}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ,                                      |                                 |                        |
|            | 1                                      | H.WI. OF A and $\mathbf{D} = \frac{1}{\sum (1 - \sum n)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -x)                                    |                                 |                        |
|            | $\frac{1}{3} = \frac{1}{1}$            | $\frac{2}{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |                                 |                        |
|            | <i>A</i><br>1 1                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |                                 |                        |
|            | $\frac{1}{A} + \frac{1}{E}$            | $\frac{1}{3} = 0$ (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                 |                        |
|            | H.M.                                   | . of C and D = $\frac{N}{\Sigma(1/r)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |                                 |                        |
|            | <u>1</u> _                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                 |                        |
|            | 5                                      | $\frac{1}{C} + \frac{1}{D}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        |                                 |                        |
|            | $\frac{1}{a}$                          | $+\frac{1}{n} = 10$ (ii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |                                 |                        |
|            | нм                                     | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                 |                        |
|            | 11.17                                  | $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j$ |                                        |                                 |                        |
|            |                                        | $=\frac{1}{\left(\frac{1}{A}+\frac{1}{B}+\frac{1}{B}\right)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\left(\frac{1}{2}+\frac{1}{D}\right)$ |                                 |                        |
|            |                                        | $=\frac{4}{(1+1)^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |                                 |                        |
|            |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |                                 |                        |
|            |                                        | $-\frac{16}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                 |                        |
|            |                                        | $=\frac{1}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |                                 |                        |
| 91.        | Which one of th                        | ese is least affected by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | extreme values?                        |                                 | Nov – 2020             |
| 0.5        | (a) Mean                               | (b) Mediar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (c) Mode                               | (d) None                        |                        |
| 92.        | A fire engine r                        | ushes to a place of f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | re accident with a s                   | peed of 110 kmph a              | nd after the           |
|            | completion of o                        | peration returned to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | he base at a speed of                  | 35 kmph. The averag             | e speed per            |
|            | nour in per-direction $(a)$ Average of | $\frac{1}{100}$ IS obtained as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | sp                                     | eeus.                           | 1NOV – 2020<br>F HM of |
|            | Answer:                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |                                 |                        |

(b) H.M. because if data are given in speed, distance and time we use H.M. and Average Speed =  $\left(\frac{2xy}{x+y}\right)$ 

**93.** The matches data is given. Then which of the following cannot be found?

Nov - 2020

| Central    | I Tendency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 33.16                                    |                                                          | <b>GOPAL BHOOT</b>                    |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------|---------------------------------------|
|            | (a) least score                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (b) Highest score                        | (c) Best score                                           | (d) Median score                      |
| 94.        | If the AM and HM of two                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | numbers are 6 and 9 re                   | espectively. Then GM i                                   | <b>Nov – 2020</b>                     |
|            | (a) 7.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (b) 8.5                                  | (C) 6.75                                                 | (d) None                              |
|            | Answer:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                          |                                                          |                                       |
|            | (a) given A.M. = $6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          |                                                          |                                       |
|            | H.M. $= 9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |                                                          |                                       |
|            | G.M. = $\sqrt{A \times H}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |                                                          |                                       |
|            | $=\sqrt{6 \times 9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          |                                                          |                                       |
|            | $=\sqrt{54}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |                                                          |                                       |
|            | = 7.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          |                                                          |                                       |
| 95.        | From the record on sizes preferred shoe size.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | sold in a shop. One can                  | compute the following                                    | g to determine the most<br>Jan – 2021 |
|            | (a) Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (b) Median                               | (c) Mode                                                 | (d) Range                             |
| 96.        | Which of the following m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | leasure does not possess                 | s mathematical propert                                   | ies? <b>Jan – 2021</b>                |
|            | (a) Arithmetic mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (b) Geometric mean                       | (c) Harmonic mean                                        | (d) Median                            |
| <b>97.</b> | if $Y = 3 + (4.5) \times$ and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mode for x – value is 2                  | 0, then the mode for y                                   | – value is <b>Jan – 2021</b>          |
|            | (a) 3.225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (b) 12                                   | (c) 24.5                                                 | (d) 93                                |
|            | Answer:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                          |                                                          |                                       |
|            | (d) Here, $y =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | = 3 + 4.5x                               |                                                          |                                       |
|            | Mode y :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $= 3 + (4.5) \times \text{Mode of } x$   |                                                          |                                       |
|            | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $= 3 + 4.5 \times 20$                    |                                                          |                                       |
|            | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | = 3 +90                                  |                                                          |                                       |
| 90         | If There are two groups                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = 93                                     | tions and U. and U.                                      | ra raspactiva harmonia                |
| 90.        | means then the harmonic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mean of combined obs                     | $\frac{11}{2}$ and $\frac{11}{11}$ and $\frac{11}{12}$ a | Ian - 2021                            |
|            | $n_1H_1+n_2H_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $n_1H_1 + n_2H_2$                        | $n_1 + n_2$                                              | $(n_1 + n_2) H_1 + H_2$               |
|            | (a) $n_1 + n_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (b) $H_1 + H_2$                          | (C) $\frac{1}{n_1 H_1 + n_2 H_2}$                        | (d) $n_1H_2 + n_2H_1$                 |
|            | Answer:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                          |                                                          |                                       |
|            | (d) Combined H.M.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $=\frac{n_1+n_2}{n_1+n_2}$               |                                                          |                                       |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\overline{H_1}^{\dagger}\overline{H_2}$ |                                                          |                                       |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $=\frac{(n_1+n_2)}{n_1H_2+n_2H_1}$       |                                                          |                                       |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $H_1H_2$<br>$(n_1+n_2)H_1H_2$            |                                                          |                                       |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $=\frac{(n_1+n_2)n_1n_2}{n_1H_2+n_2H_1}$ |                                                          |                                       |
| <b>99.</b> | There are n numbers. W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | when 50 is subtracted                    | from each of these n                                     | umber the sum of the                  |
|            | numbers so obtained is -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10. When 46 is subtrac                   | cted from each of the o                                  | riginal n numbers, then               |
|            | the sum of numbers. So                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | obtained is 70. What is                  | s the mean of the origi                                  | nal n numbers? July –                 |
|            | 2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          |                                                          |                                       |
|            | (a) 56.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (b) 25.7                                 | (c) 49.5                                                 | (d) 53.8                              |
|            | Answer:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                          |                                                          |                                       |
|            | (c) Here total No. of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | observations $(N) = n$                   |                                                          |                                       |
|            | $\sum (x_i - 50) = -1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                                       |                                                          |                                       |
|            | $\sum x_i - \sum 50 = -1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                        |                                                          | •                                     |
|            | nx - 50n = -10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          | (                                                        | 1)                                    |
|            | $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i$ | -70                                      | $[\cdot \sum x_i] =$                                     | = nx                                  |
|            | and $\sum (x_i - 46)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 - 70                                   |                                                          |                                       |
|            | $\sum x_i - \sum 40$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - 10                                     |                                                          | (2)                                   |
|            | 11x - 4011 = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | vu<br>eq(1)                              |                                                          | _(∠)                                  |
|            | eq (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          |                                                          |                                       |

 $\mathbf{n}\bar{x} - 46\mathbf{n} = 70$ 

 $n\bar{x} - 50n = -10$ <u>- + +</u> <u>-4n = 80</u> 20

n = 20 in eq (1)

n = 20

 $20\bar{x} - 50 \times 20 = -10$  $20\bar{x} - 1000 = -10$  $20\bar{x} = -10 + 1000$  $20\bar{x} = 990$  $\bar{x} = \frac{990}{20}$  $\bar{x} = 49.5$ **100.** The mean of 'n' observation is 'x'. if k is added to each observation, then the new mean is. **July – 2021** (a) k (b) xk (c) x-k (d) x+k**Answer:** (d) Given Mean of n observation  $(\bar{x}) = x$  $\frac{\sum x_i}{n} = \mathbf{X}$  $\sum x_i = xn$  $x_1 + x_2 + x_3 + \dots \dots x_n = nx$ (i) If k is added to each observation then New  $\sum x_i = (x_1 + k) + (x_2 + k) + (x_3 + k) + \dots + (x_n + k)$  $= (x_1 + x_2 + x_3 + \dots + x_n) + (k + k + k + \dots + n \text{ term})$ = nx + nk New Mean =  $\frac{New \sum x_i}{\sum x_i}$  $=\frac{n}{\frac{nx+nk}{n}}$  $=\frac{n(x+k)}{k}$ =(x+k)**101.** If y = 3 + 1.9x, and mode of x is 15, then the mode of y is: July - 2021 (a) 15.9 (b) 27.8 (c) 35.7 (d) 31.5 Answer: (d) if y = 3 + 1.9xthen mode of y = 3 + 1.9 (mode of x)  $= 3 + 1.9 \times 15$ = 3 + 28.5= 31.5 **102.** Expenditures of a company (in million rupees) per item in various years **July - 2021** Year **Item of expenditures Fuel and** Bonus **Interest on Taxes** Salary **Transport** Loans 1998 98 23.4 83 288 3.00 1999 2.52 342 112 32.5 108 324 2000 108 3.84 41.6 74 2001 336 133 3.68 36.4 88 420 142 3.96 49.4 2002 98 What is the average amount of interest per which the company had to pay during this period? (a) 33.66 (b) 36.66 (c) 31.66 (d) 39.66 **Answer: (b)** Average Interest =  $\frac{23.4+32.5+41.6+36.4+49.4}{2100}$ = 36.66**103.** If there are 3 observations 15, 20, 25 then the sum of deviation of the observations from their AM is **Dec 2021** (a) 0(b) 5(c) -5 (d) 10 **104.** If the AM and GM for 10 observations are both 15, then the value of HM is **Dec 2021** (a) less than 15 (b) more than 15 (c) 15 (d) cannot be determined **105.** If average mark for a group of 30 girls is 80, a group of boys is 70 and combined average is

| Central | Tendency           | 33.1                                                                                     | 8                    |                    | <b>GOPAL BHOO</b> |
|---------|--------------------|------------------------------------------------------------------------------------------|----------------------|--------------------|-------------------|
|         | 76, then how m     | any are in the boy's group                                                               |                      |                    | Dec 2021          |
|         | (a) 21             | (b) 20                                                                                   | (c) 22               | (d) 19             |                   |
|         | Answer:            |                                                                                          |                      | ~ /                |                   |
|         | ( <b>b</b> ) We ha | ve $n_1 = 30$ ; $\bar{x}_1 = 80$ ; $n_2 = ?$ ; $\bar{x}_2 =$                             | $=70; =\bar{x}=76$   |                    |                   |
|         | We k               | now that $\bar{x} = \frac{n_1 \bar{x}_1 + n_2 \bar{x}_2}{n_1 \bar{x}_1 + n_2 \bar{x}_2}$ |                      |                    |                   |
|         | Ther               | efore, $76 = \frac{n_1 + n_2}{(30 \times 80) + (n_2 \times 70)}$                         |                      |                    |                   |
|         | Now                | $30+n_2$                                                                                 |                      |                    |                   |
|         | Onti               | $(a) \rightarrow 21$                                                                     |                      |                    |                   |
|         | Oput               | $(30 \times 80) + (21 \times 70)$ 75 88                                                  | 76                   |                    |                   |
|         | K.F                | $1.5. \equiv \frac{30+21}{30+21} \equiv 75.88 \neq 7$                                    | /0                   |                    |                   |
|         | Opti               | on (b) $\rightarrow 20$                                                                  |                      |                    |                   |
|         | R.I                | H.S = $\frac{(30\times80)+(20\times70)}{30+20} = 76 = L$                                 | .H.S.                |                    |                   |
| 106.    | If two variables   | a and b are related by $c = ab$ th                                                       | en G.M. of c is e    | qual to            |                   |
|         | (a) $G > M > of a$ | + G.M. of b                                                                              | (b) G.M. of a        | $\times$ G.M. of b |                   |
|         | (c) G.M. of a –    | G.M. of b                                                                                | (d) G.M. of a        | / G.M. of b        |                   |
| 107.    | For a moderat      | ely skewed distribution the r                                                            | nedian is twice      | the mean, then     | the mode is       |
|         | times t            | he median.                                                                               |                      |                    | <b>Dec 2021</b>   |
|         | (a) 3              | (b) 2                                                                                    | (c) 2/3              | (d) 3/2            |                   |
|         | Answer:            |                                                                                          |                      |                    |                   |
|         | ( <b>b</b> ) We kr | low that for a moderately skewe                                                          | ed distribution.     |                    |                   |
|         | Mode               | e = 3 Median – 2 Mean Eq. (1                                                             | .)                   |                    |                   |
|         | Give               | n: Median = 2 Mean $Median$                                                              |                      |                    |                   |
|         | Ther               | efore, Mean = $\frac{Montant}{2}$                                                        |                      |                    |                   |
|         | Putti              | ng the value of Mean = $\frac{Median}{2}$ i                                              | n Eq. (1), we get    | :                  |                   |
|         | Mod                | $e = 3$ Median - $2\left(\frac{Median}{Median}\right)^2$                                 | 1                    |                    |                   |
|         | Mod                | $c = 3$ We diam $-2 \begin{pmatrix} 2 \\ 2 \end{pmatrix}$                                | 1                    |                    |                   |
|         | Moo                | le = 3 Median – Median = 2 Me                                                            | dian                 |                    |                   |
| 108     | The median val     | ue of the set of observations 48                                                         | 36 72 87 10 6        | 56 56 01 is        | Dec 2021          |
| 100.    | (a) $53$           | (b) 87                                                                                   | (c) 61               | (d) 19             | DCC 2021          |
|         | Answer:            |                                                                                          |                      | (4) 19             |                   |
|         | (c) First, a       | urrange the terms in ascending o                                                         | order:               |                    |                   |
|         | 19, 36             | , 48, 56, 66, 72, 87, 91                                                                 |                      |                    |                   |
|         | Since              | the number of terms is even, i.e                                                         | e., 8, the median    | will be obtained   | by the            |
|         | average of the t   | WO                                                                                       |                      |                    |                   |
|         | mide               | le terms, i.e., 56, and 66.                                                              |                      |                    |                   |
|         | There              | fore, Median= $\frac{56+66}{2} = 61$                                                     |                      |                    |                   |
| 109.    | One hundred p      | articipant expressed their opin                                                          | nion on recomme      | ending a new pr    | oduct to their    |
|         | friends using t    | he attributes : most unlikely,                                                           | not sure, likely,    | most likely. Th    | ne appropriate    |
|         | measure of cent    | ral tendency that can be used he                                                         | ere is               |                    | <b>Dec 2021</b>   |
|         | (a) Mean           | (b) Mode                                                                                 | (c) Geometri         | c mean (d) Harr    | nonic mean        |
| 110.    | Along a road th    | here are 5 buildings of apartme                                                          | ents, marked as 1    | , 2, 3, 4, 5. Num  | iber of people    |
|         | residing in each   | building is available. A bus sto                                                         | op is to be setup in | the in building    | ildings so that   |
|         | minimum One        | must consider involving                                                                  | to find the posi-    | it inter buildings | must be kept      |
|         | (a) Mean           | (b) Median                                                                               | to find the post     | (d) Wei            | op. Dec 2021      |
| 111     | Given that Mea     | n = 70.20 and Mode $- 70.50$ th                                                          | e Median is eve      | ected to be        | Entre mean        |
| 111.    | Dec 2021           | m = 70.20 and $mode = 70.50$ , m                                                         | ie meenan is expe    |                    |                   |
|         | (a) 70.15          | (b) 70.20                                                                                | (c) 70.30            | (d) 70.3           | 5                 |
|         | Answer:            |                                                                                          |                      |                    |                   |
|         | (c) Since          | Mean and Mode are different, t                                                           | his data is clearly  | not symmetric.     |                   |
|         | For m              | oderately skewed data, we kno                                                            | w that Mode $= 3$    | Median – 2 Mear    | 1.                |

**GOPAL BHOOT Central Tendency** 33.19 Therefore, Median =  $\frac{Mode+2 Mean}{2}$ Median =  $\frac{70.50 + (2 \times 70.20)}{100}$ = 70.303 **June 2022 112.** Which is not a measure of central tendency (a) Mean (b) Median (c) Quartile deviation (d) Mode **113.** When each value does not have equal importance then **June 2022** (a) AM(b) G M (c) HM(d) Weighted Average **114.** The mean of 20 observation is 38. If two observation are taken as 84 and 36 instead of 48 and 63 find new means. **June 2022** (a) 38.45 (b) 41.15 (c) 37.55 (d) 40.05 **115.** The 3<sup>rd</sup> decile for the numbers **June 2022** 15, 10, 20, 25, 18, 11, 9, 12 is (a) 13 (b) 10.70 (c) 11.00 (d) 11.50 Answer: (b) Write the terms in Ascending order 9, 10, 11, 12, 15, 18, 20, 25 Here N = 8 $D_3 = \left[\frac{3(N+1)}{10}\right]^{th}$  $= \left[\frac{3(N+1)}{10}\right]^{th}$  $= \left[\frac{27}{10}\right]^{th}$  $= 2.70^{th}$  term  $= 2^{\text{th}} \text{term} + 0.70(3^{\text{th}} \text{term} - 2^{\text{th}} \text{term})$ = 10 + 0.70(11 - 10) $= 10 + 0.70 \times 1$ = 10 + 0.70= 10.70**116.** If mean  $(\overline{X})$  is = 10 and mode (Z) is = 7, then find out the value of median (M) Dec 2022 (a) 9 (b) 17 (d) 4.33 (c) 3**Answer:** (a) Mean( $\bar{x}$ ) = 10, Mode(z) = 7, Median(Me) = ? We know that: Mode = 3 median - 2 mean $7 = 3 \times \text{Me} - 2 \times 10$ 7 + 20 = 3Me  $Me = \frac{27}{3} = 9$ Me = 9**117.** The relationship between two variables x and y is given by 4x - 10y = 20. If the median value of the variable x is 10 then what is median value of variable y? **Dec 2022** (a) 1.0 (b) 2.0 (c) 3.0(d) 4.0 **118.** Mean deviation is minimum when deviations are taken from **Dec 2022** (a) Mean (b) Median (c) Mode (d) Range **119.** The median of the observations 42, 72, 35, 92, 67, 85, 72, 81, 51, 56 **Dec 2022** (b) 72 (c) 64 (a) 69.5 (d) 61.5 Answer: (a) Write all conservations in Ascending order 35, 42, 51, 56, 67, 72, 72, 81, 85, 92 Here, No. of observation (N) = 10Median (Me) = Average of two middle term  $\left(\frac{67+72}{2}\right)$ = 69.5 **120.** The mean of 50 observations is 36. If two observations 30 and 42 are to be excluded, then the

| Central | Tendency                                         | 33.2                                                                                           | 0                         | GOPAL BHOOT                                                              |
|---------|--------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------|--------------------------------------------------------------------------|
|         | mean of the remainin<br>(a) 36                   | g observations will be:<br>(b) 38                                                              | <b>Dec 2022</b><br>(c) 48 | (d) 50                                                                   |
|         | Answer:                                          |                                                                                                |                           |                                                                          |
|         | (a) The mean of The sum of                       | of 50 observations = $36$<br>f all observations = $50 \times 3$<br>= $1800$                    | 36                        |                                                                          |
|         | If two observa                                   | tions 30 and 42 are exclud                                                                     | led then the sum of       |                                                                          |
|         | remaining (50                                    | -2 = 48) observations                                                                          |                           |                                                                          |
|         |                                                  | = 1800 - 3                                                                                     | 0 - 42                    |                                                                          |
|         |                                                  | = 1728                                                                                         |                           |                                                                          |
|         | The mean of 4                                    | $8 \text{ observations} = \frac{1728}{48} = 36$                                                |                           |                                                                          |
| 121.    | If Arithmetic Mean a these numbers are:          | and Geometric Mean betwee Dec 2022                                                             | een two numbers a         | are 5 and 4 respectively, then                                           |
|         | (a) 2 & 3                                        | (b) 2 & 8                                                                                      | (c) 4 & 6                 | (d) 1 & 16                                                               |
|         | Answer:                                          |                                                                                                |                           |                                                                          |
|         | (b) Here, A.M<br>HINTS/TR                        | = 5  and G.M. = 4<br>IALS (B) Two observation                                                  | ns are 2 and 8            |                                                                          |
|         | A.M. = $\frac{1}{2}$                             | $-=\frac{1}{2}=5$                                                                              |                           |                                                                          |
|         | G.M. = $\sqrt{a}$                                | $\overline{b} = \sqrt{2 \times 8} = \sqrt{16} = 4$                                             |                           |                                                                          |
|         | So, these n                                      | os. are 2 and 8.                                                                               |                           |                                                                          |
| 122.    | If AM between two r                              | numbers is 5 and GM is 4 t                                                                     | hen what is the val       | ue of HM? <b>Dec 2022</b>                                                |
|         | (a) 3.2                                          | (b) 3.4                                                                                        | (c) 3.5                   | (d) 3.6                                                                  |
|         | Answer:                                          | M = 5 C M = 4 U M = 9                                                                          |                           |                                                                          |
|         | (a) Given : A.                                   | M = 3, G.M = 4, H.M = 7<br>$A. = \frac{(G.M)^2}{(A.M)} = \frac{(4)^2}{5} = \frac{16}{5} = 3.2$ | 2                         |                                                                          |
| 123.    | The average age of 1                             | 5 students in a class is 9 y                                                                   | years. Out of them,       | , average age of 5 students is                                           |
|         | 13 years and that 8 st                           | udents is 5 years. What is                                                                     | average of remaini        | ng 2 students? Dec 2022                                                  |
|         | (a) 5 years                                      | (b) 9 years                                                                                    | (c) 10 years              | (d) 15 years                                                             |
|         | . Answer:                                        |                                                                                                |                           |                                                                          |
|         | (c) Total stude                                  | nt = 15 ( $\bar{x} = 9$ years)                                                                 |                           |                                                                          |
|         | <u> </u>                                         | I                                                                                              |                           |                                                                          |
|         | n. – 5                                           |                                                                                                |                           | (15, 5, 8) = 2                                                           |
|         | $\oint \Pi_1 = J$ $\bar{x}_1 = -13 \text{ year}$ | $\mathbf{M}_2 = \mathbf{\delta}$                                                               | are                       | $\mathbf{M}_3 = (13 - 3 - 8) = 2$<br>$\bar{\mathbf{x}}_1 = \mathbf{x}_2$ |
|         | $x_1 = 15$ year                                  | $x_2 - 5 y c_3$<br>$x_1 \bar{x}_1 + n_2 \bar{x}_2 + n_3 \bar{x}_3$                             | u15                       | $\lambda_3 - \lambda$                                                    |
|         | Combined in                                      | lean $(x) = \frac{n_1 + n_2 + n_3}{n_1 + n_2 + n_3}$                                           |                           |                                                                          |
|         |                                                  | $9 = \frac{5 \times 13 + 8 \times 5 + 2 \times x}{5 + 8 + 2}$                                  |                           |                                                                          |
|         |                                                  | $\frac{9}{2} = \frac{65+40+2x}{2}$                                                             |                           |                                                                          |
|         |                                                  | 1 	15 	125 - 105 	2w                                                                           |                           |                                                                          |
|         |                                                  | 133 - 103 + 2x<br>2x - 30                                                                      |                           |                                                                          |
|         |                                                  | x = 15 years                                                                                   |                           |                                                                          |
|         | The average                                      | ge of remaining 2 students                                                                     | = 15 years                |                                                                          |
| 124.    | A Professor has give arithmetic mean and         | en assignment to students<br>standard deviation for 10                                         | in a statistics cla       | ss . A student computer the                                              |
|         | She paints out the stu                           | ident that he has made mis                                                                     | take in taking one        | observation as 100 instead of                                            |
|         | 50. What would be t                              | he consent mean if the wro                                                                     | ong observation is o      | correct ? June 2023                                                      |
|         | (a) 50.5                                         | (b) 49.9                                                                                       | (c) 49.5                  | (d) 50.1                                                                 |
|         | Answer :                                         |                                                                                                |                           |                                                                          |
|         | (c) Incorrect M<br>Incorrect (S                  | lean $(\overline{\mathbf{x}}) = 50$<br>S.D) = 5                                                |                           |                                                                          |

No. of observation (N) = 100

|      | Right<br>Wrone    | Value (R.V) =<br>v Value (W V)    | = 50<br>= 100                                                                                 |                                 |      |                                |       |
|------|-------------------|-----------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------|------|--------------------------------|-------|
|      | Correct           | $(\overline{\mathbf{x}})_{c} = 1$ | Incorrect mean +                                                                              | $-\left(\frac{RV-WV}{W}\right)$ |      |                                |       |
|      |                   |                                   | $= 50 + \left(\frac{50 - 100}{100}\right)$ $= 50 + \left(\frac{-50}{100}\right)$ $= 50 - 0.5$ |                                 |      |                                |       |
| 125  | Find the mean o   | f the following                   | = 49.5<br>2 date                                                                              |                                 |      |                                |       |
| 1201 | Class<br>interval | 10-20 20-                         | 30 30-40                                                                                      | 40-50                           | 50-6 | 0 60-70                        | 70-80 |
|      | Frequency         | 9 13                              | 3 6                                                                                           | 4                               | 6    | 2                              | 3     |
|      | (a) 23.7          | (b) 35                            | .7                                                                                            | (c) 39.7                        |      | (d) 43                         | .7    |
|      | Answer:           |                                   |                                                                                               |                                 |      |                                |       |
|      | (0)               | C.I                               | Frequency(f)                                                                                  | Mid Value                       | (x)  | $\mathbf{f} \times \mathbf{x}$ |       |
|      |                   | 10 - 20                           | 9                                                                                             | 15                              |      | 135                            |       |
|      |                   | 20 - 30                           | 13                                                                                            | 25                              |      | 325                            |       |
|      |                   | 30 - 40                           | 6                                                                                             | 35                              |      | 210                            |       |
|      |                   | 40 - 50                           | 4                                                                                             | 45                              |      | 180                            |       |
|      |                   | 50 - 60                           | 6                                                                                             | 55                              |      | 330                            |       |
|      |                   | 60 - 70                           | 2                                                                                             | 65                              |      | 130                            |       |
|      |                   | 70-80                             | 3                                                                                             | 75                              |      | 225                            |       |
|      |                   |                                   | N=43                                                                                          |                                 |      | fx=1535                        |       |

Mean 
$$(\bar{x}) = \frac{\sum fx}{N} = \frac{1535}{43} = 35.7$$

**126.** For a moderately skewed distribution of master is statistics is for a group is for a group of 200 students, the mean and median marks were found to be 55.60 and 52.40 respectively . What are the model makes? June 2023

(a) 54.43 (b) 48 (c) 53.56 (d) 46 **Answer**: (d) Given Mean = 55.60Median = 52.40Mode = 3 Median - 2 Mean  $= 3 \times 52.40 - 2 \times 55.60$ = 157.20 - 11.20= 46 **127.** The geometric mean of 3,7,11,15,24,28,30,0 is : June 2023 (a) 6 (b) 0(c) 9 (d) 12 Answer : **(b)** G.M =  $(X_1, X_2, X_3, X_4, \dots, X_n)^{1/n}$  $= (3 \times 7 \times 11 \times 15 \times 24 \times 28 \times 30 \times 0)^{1/8}$  $=(0)^{1/8}$ = 0**128.** The median of the following set of observation 24, 18, 36, 42, 30, 28, 21, 20, 25, 33, 18 June 2023 (a) 26.5 (b) 27.5 (c) 28.5 (d) 29.5 **Answer:** 

(a) Write the terms in Ascending order

|      |                  |                      |                                                                         |                                    |                     |                |              | -         | -          |
|------|------------------|----------------------|-------------------------------------------------------------------------|------------------------------------|---------------------|----------------|--------------|-----------|------------|
|      | 1<br>H           | .8, 20, 2<br>Here, N | 21, 24, 25,<br>o. of obser                                              | 28, 30, 33<br>vation (N)           | 3, 36, 42<br>) = 10 |                |              |           |            |
|      | Ν                | Median               | $(\mathbf{M}_{2}) = \left(\frac{\mathbf{N}_{2}}{\mathbf{M}_{2}}\right)$ | $(\frac{+1}{2})^{m}$ term          |                     |                |              |           |            |
|      | 1                | iouiuii              |                                                                         | $(0+1)^{m}$                        |                     |                |              |           |            |
|      |                  |                      | $=\left(\frac{1}{2}\right)$                                             | $\frac{1}{2}$ ) term               | m                   |                |              |           |            |
|      |                  |                      | = 5                                                                     | $.5^{\rm M}$ term                  |                     |                |              |           |            |
|      |                  |                      | = (                                                                     | 5 <sup>m</sup> term+6 <sup>m</sup> | term)               |                |              |           |            |
|      |                  |                      | = (                                                                     | 25+28                              |                     |                |              |           |            |
|      |                  |                      | - (                                                                     | 2 )                                |                     |                |              |           |            |
| 129. | Find the mo      | ode of f             | –<br>he followi                                                         | ng data                            |                     |                |              |           |            |
| 12/1 | X                | 2                    | 5-30                                                                    | 30-35                              | 35-40               | 40-45          | 45-5         | 50        | 50-55      |
|      | F(x)             |                      | 20                                                                      | 53                                 | 51                  | 51             | 41           | -         | 53         |
|      | June 2023        |                      |                                                                         |                                    |                     |                |              |           |            |
|      | (a) 31.75        |                      | (b) 3                                                                   | 80.75                              | (                   | c) 33.75       | (            | d) 35.75  |            |
|      | Answer:          |                      |                                                                         |                                    |                     |                |              |           |            |
|      | (c)              |                      |                                                                         |                                    |                     |                |              |           |            |
|      |                  | X:                   | 25-30                                                                   | 30-35                              | 35-40               | 40-45          | 45-50        | 50-55     |            |
|      |                  | I:<br>Uoro M         | 20<br>Indal Class                                                       | $\frac{55}{202}$                   | 5,<br>5,            | 51             | 41           | 55        |            |
|      |                  | So mo                | de lies froi                                                            | m'30-35'                           | 5                   |                |              |           |            |
|      |                  | 50 110               |                                                                         | .n 50 55<br>N                      | Aode = 33.          | 75             |              |           |            |
| 130. | For the give     | en data              | set : 5,10,                                                             | 3,6,4,8,9,3                        | ,15,2,9,4,1         | 9,11,4, what   | is the media | an . June | e 2023     |
|      | (a) 8            |                      | (b) 6                                                                   | 5                                  | (                   | c) 4           | (            | d) 9      |            |
|      | Answer:          |                      |                                                                         |                                    |                     |                |              |           |            |
|      | (b) Writ         | e all ob             | servations                                                              | in ascendi                         | ing order           |                |              |           |            |
|      | 2,3,3            | 3,4,4,4,4            | 5,6,8,9,9,1                                                             | 0,11,15,19                         |                     |                |              |           |            |
|      | Here             | e N = I              | 5                                                                       | 、 th                               |                     |                |              |           |            |
|      | Med              | lian (M              | $\left(\frac{n+1}{2}\right) = \left(\frac{n+1}{2}\right)$               | ) term                             |                     |                |              |           |            |
|      |                  |                      | $-(^{15+})$                                                             | $(1)^{\text{th}}$                  |                     |                |              |           |            |
|      |                  |                      | $-\left(\frac{2}{2}\right)$                                             | ) term                             |                     |                |              |           |            |
|      |                  |                      | $=8^{\text{cm}}$ t                                                      | erm                                |                     |                |              |           |            |
| 131  | If the mean      | of two               | = 0                                                                     | $\sim 30$ and $\sigma$             | ometric m           | ean is 24 th   | on what wi   | ll ba Har | monic maan |
| 131. | of two num       | bers?                | Iune                                                                    | 2023                               |                     | call 18 24, ul | ch what wh   |           |            |
|      | (a) 19.2         |                      | (b) 2                                                                   | 2025                               | (                   | c) 22.3        | ()           | d) 18.4   |            |
|      | Answer :         |                      |                                                                         |                                    | X                   |                | × ×          |           |            |
|      | (a) Here         | mean =               | = 30, Geon                                                              | netric mear                        | n = 24              |                |              |           |            |
|      | Or A             | .M =                 | = 30,G.M =                                                              | = 24 , H.M                         | = ?                 |                |              |           |            |
|      | G.1              | $M^2 =$              | $A.M \times H.$                                                         | M                                  |                     |                |              |           |            |
|      | (24              | )~ =                 | $30 \times H.M$                                                         | l<br>T                             |                     |                |              |           |            |
|      | 57               | 0 =                  | $= 30 \times H.W$                                                       | L                                  |                     |                |              |           |            |
|      | H.N              | /1 =                 | $\frac{1}{30} = 19.2$                                                   | 2                                  |                     |                |              |           |            |
| 132. | The AM an        | d HM o               | of two nun                                                              | bers are 5                         | and 3.2 re          | spectively, th | en GM wil    | be: dec   | e 2023     |
|      | (a) 4.4          |                      | (b) 4                                                                   | .2                                 | (                   | c) 4.0         | ()           | d) 3.8    |            |
|      | Answer: $(c) He$ | ro AN                | <i>и</i> −5 н №                                                         | 1-32 G                             | M - 2               |                |              |           |            |
|      | We               | know                 | that                                                                    | I = J.2, U                         | .1v1 — :            |                |              |           |            |
|      | (                | $(G.M)^2$            | $= A.M \times F$                                                        | I.M                                |                     |                |              |           |            |
|      |                  | ,                    | $= 5 \times 3.2$                                                        |                                    |                     |                |              |           |            |
|      |                  | $(G.M)^2$            | = 16                                                                    |                                    |                     |                |              |           |            |

G.M = 
$$\sqrt{16} = 4$$

**133.** If mode of a grouped data is 10 and median is 6, then what is the value of mean ? dec 2023

| Central | Tendency                                  |                                                              | 33.23              | GOPAL BHOO                             | T |  |  |  |  |  |
|---------|-------------------------------------------|--------------------------------------------------------------|--------------------|----------------------------------------|---|--|--|--|--|--|
|         | (a) 2                                     | (b) 4                                                        | (c) 6              | (d) 8                                  |   |  |  |  |  |  |
|         | Answer :<br>(b) Her                       | = Mode = 10 Median = 6 M                                     | ean - 2            |                                        |   |  |  |  |  |  |
|         | (b) Hei                                   | 10  de = 3  Median - 2  Mean                                 |                    |                                        |   |  |  |  |  |  |
|         | 1                                         | $0 = 3 \times 6 - 2 \times Mean$                             |                    |                                        |   |  |  |  |  |  |
|         | 1                                         | 0 = 18 - 2 Mean                                              |                    |                                        |   |  |  |  |  |  |
|         | 2                                         | Mean = 18 - 10                                               |                    |                                        |   |  |  |  |  |  |
|         | 2                                         | Mean = 8                                                     |                    |                                        |   |  |  |  |  |  |
|         | IV                                        | $\frac{1}{8}$                                                |                    |                                        |   |  |  |  |  |  |
| 134.    | If mean of :                              | $fean = \frac{1}{2} = 4$<br>5 observations x+1, x+3, x+5, x- | +7, and x+9 is gi  | iven 15, then the value of x will be : |   |  |  |  |  |  |
|         | dec 2023                                  | (b) 12                                                       | (a)                | (4) 11                                 |   |  |  |  |  |  |
|         | (a) 10<br>Answer •                        | (0) 12                                                       | (0) 8              | (d) 11                                 |   |  |  |  |  |  |
|         |                                           | $(\mathbf{x}) = \sum \mathbf{x}$                             |                    |                                        |   |  |  |  |  |  |
|         | (a) wear                                  | $\frac{1}{(X)} - \frac{1}{N}$                                |                    |                                        |   |  |  |  |  |  |
|         | 15                                        | $=\frac{\frac{1}{5}}{5}$                                     |                    |                                        |   |  |  |  |  |  |
|         | 75                                        | = 5x + 25                                                    |                    |                                        |   |  |  |  |  |  |
|         | 5x                                        | =75-25                                                       |                    |                                        |   |  |  |  |  |  |
|         | SX                                        | = 50                                                         |                    |                                        |   |  |  |  |  |  |
|         | x                                         | = 10                                                         |                    |                                        |   |  |  |  |  |  |
|         |                                           |                                                              |                    |                                        |   |  |  |  |  |  |
| 135.    | The mean of                               | of the first three terms is 17 and                           | mean of next for   | our terms is 21. Calculate the mean    |   |  |  |  |  |  |
|         | of seven ter $(1)$ 19 29                  | ms. dec $2023$                                               | (-) 10 59          | (4) 10 29                              |   |  |  |  |  |  |
|         | (a) 18.28                                 | (b) 19.78                                                    | (c) 19.58          | (d) 19.28                              |   |  |  |  |  |  |
|         | (d) Here                                  | $e_{n_1} = 3, n_2 = 4$                                       |                    |                                        |   |  |  |  |  |  |
|         | ()                                        | $\overline{x_1} = 17, \overline{x_2} = 21$                   |                    |                                        |   |  |  |  |  |  |
|         | Con                                       | nbined mean of 7 terms.                                      |                    |                                        |   |  |  |  |  |  |
|         | $\overline{\mathbf{x}} =$                 | $\frac{n_1\overline{x_1}+n_2\overline{x_2}}{n_1+n_2}$        |                    |                                        |   |  |  |  |  |  |
|         | -                                         | $\frac{n_1 + n_2}{3 \times 17 + 4 \times 21}$                |                    |                                        |   |  |  |  |  |  |
|         | -                                         |                                                              |                    |                                        |   |  |  |  |  |  |
|         | =                                         | $=\frac{1}{7}$                                               |                    |                                        |   |  |  |  |  |  |
|         | =                                         | $=\frac{135}{7}$                                             |                    |                                        |   |  |  |  |  |  |
|         | $\overline{\mathbf{x}} =$                 | 19.28                                                        |                    |                                        |   |  |  |  |  |  |
| 136.    | The mean                                  | of set of 20 observations in                                 | 18.3.The mean      | is reduced by 0.6 when a new           |   |  |  |  |  |  |
|         | observation                               | is : dec 2023                                                |                    |                                        |   |  |  |  |  |  |
|         | (a) 1/.6                                  | (b) 18.9                                                     | (c) 5.7            | (d) 24.6                               |   |  |  |  |  |  |
|         |                                           | The mean of 20 observations                                  | = 18.3             |                                        |   |  |  |  |  |  |
|         |                                           | The sum of 20 ovservations                                   | $= 18.3 \times 20$ |                                        |   |  |  |  |  |  |
|         |                                           |                                                              | = 366              |                                        |   |  |  |  |  |  |
|         | Le                                        | t new observation $= x$                                      |                    |                                        |   |  |  |  |  |  |
|         | lf t                                      | the new observation is added the                             | n                  |                                        |   |  |  |  |  |  |
|         | sun                                       | h of all observations = $(306 \pm x)$                        | () 1 - 21          |                                        |   |  |  |  |  |  |
|         | N                                         | lew mean = $18.3 - 0.6 = 17.7$                               | 1 - 21             |                                        |   |  |  |  |  |  |
|         | N                                         | $\text{lew mean} = \frac{(366+x)}{(366+x)}$                  |                    |                                        |   |  |  |  |  |  |
|         | 1                                         | 77 (366 + r)                                                 |                    |                                        |   |  |  |  |  |  |
|         | $\frac{1}{1} \times \frac{(300 + x)}{21}$ |                                                              |                    |                                        |   |  |  |  |  |  |
|         | 3                                         | 71.7 = 366 + x                                               |                    |                                        |   |  |  |  |  |  |
|         | Х                                         | = 371.7 - 366                                                |                    |                                        |   |  |  |  |  |  |

Answer:

**(b)** Given, 2x - y = 3

|      | x =                       | 5.7                                           |                              |                   |                   |                  |
|------|---------------------------|-----------------------------------------------|------------------------------|-------------------|-------------------|------------------|
| 137. | If A.M. and numbers. dec  | G.M of two posi<br>2023                       | tive numbers a               | and b are 12      | and 12, respect   | ively, find the  |
|      | (a) 18 and 6              | (b) 15 a                                      | ind 9                        | (c) 16 and 8      | (d) 12 ar         | nd 12            |
|      | Answer:                   |                                               |                              |                   |                   |                  |
|      | ( <b>d</b> ) Give         | en, A.M. = $12$                               |                              |                   |                   |                  |
|      | $\frac{a+b}{2}$           | = 12                                          |                              |                   |                   |                  |
|      | a +                       | b = 24(1)                                     | )                            |                   |                   |                  |
|      | and                       | G.M. = 12                                     |                              |                   |                   |                  |
|      | $\sqrt{ab}$               | = 12                                          |                              |                   |                   |                  |
|      | ab =                      | 144(2)                                        |                              |                   |                   |                  |
|      | By Hits                   | and trails option '                           | D' 12  and  12               |                   |                   |                  |
| 1.00 | Satisfie                  | d both equation.                              |                              |                   |                   |                  |
| 138. | If the range of dec 2023  | f a data is 20 and i                          | ts smallest valu             | e 18 5, then what | is the largest va | lue of data 18 ? |
|      | (a) 20                    | (b) 25                                        |                              | (c) 5             | (d) 30            |                  |
|      | Answer:                   |                                               | 0 11 (1                      | 7 1               |                   |                  |
|      | ( <b>b</b> ) Range $20 -$ | ge (R) Largest Val                            | ue – Smallest v              | / alue            |                   |                  |
|      | 20 –<br>Larg              | - Largest value – .<br>est value – $20 \pm 5$ | )                            |                   |                   |                  |
|      | Larg                      | = 25                                          |                              |                   |                   |                  |
| 139. | The Median of             | of the following free                         | equency distribut            | tion is: dec 2023 | 5                 |                  |
|      | х                         | 0-10                                          | 10-20                        | 20-30             | 30-40             | 40-50            |
|      | f(x)                      | 3                                             | 5                            | 20                | 12                | 7                |
|      | (a) 27.75                 | (b) 9.3                                       | 5                            | (c) 8.25          | (d)10.0           | )1               |
|      | Answer:                   |                                               |                              |                   |                   |                  |
|      | (a)                       |                                               |                              |                   |                   |                  |
|      |                           | Х                                             | f                            |                   | C.F.              | _                |
|      |                           | 0 - 10                                        | 3                            |                   | 3                 |                  |
|      |                           | 10 - 20                                       | 5                            |                   | $8 \rightarrow c$ | _                |
|      |                           | 20 - 30                                       | $20 \rightarrow f$           |                   | 28                |                  |
|      |                           | 30 - 40                                       | 12                           |                   | 40                | -                |
|      |                           | 40 - 50                                       | 7                            |                   | 47                |                  |
|      |                           |                                               | N = 27                       |                   |                   | _                |
|      |                           | Here, $m = \frac{N}{2} = \frac{1}{2}$         | $\frac{47}{2} = 23.5$        |                   |                   |                  |
|      |                           | Median = $L1 + \frac{L}{2}$                   | $\frac{L^2 - L1}{f} (m - c)$ |                   |                   |                  |
|      |                           | = 20 +                                        | $\frac{30-20}{20}(23.5-8)$   |                   |                   |                  |
|      |                           | $= 20 + \frac{1}{2}$                          | $\frac{10}{10} \times 15.5$  |                   |                   |                  |
|      |                           | 20                                            | 20<br>155                    |                   |                   |                  |
|      |                           | = 20 + -                                      | 20                           |                   |                   |                  |
|      |                           | = 20 + 7                                      | 1.15                         |                   |                   |                  |
|      |                           | = 21.15                                       |                              |                   |                   |                  |
| 140. | If two, variat            | ble 'x' and 'y' are                           | related as 2x-y=             | =3, if the median | of 'x' is 10, wh  | at is median of  |
|      | (a) 4                     | (b) 17                                        |                              | (c) 5             | (d) 6             |                  |

Median of x = 10  $2 \times 10 - y = 3$  20 - y = 3 y = 20 - 3y = 17

**141.** If the mean and median of a moderately asymmetrical series are 26.8 and 27.9 respectively, then the most probable mode is: dec 2023

(a) 35.4 (b) 30.1 (c) 34.3 (d) 70.8 **Answer:** (b) Mode = 3 Median - 2 Mean =  $3 \times 27.9 - 2 \times 26.8$ = 83.7 - 53.6= 30.1

|     |   |      |   |      |   |      |   | A    | nswe | er Ke | ey |      |   |      |   |      |   |      |   |
|-----|---|------|---|------|---|------|---|------|------|-------|----|------|---|------|---|------|---|------|---|
| 1.  | b | 2.   | с | 3.   | d | 4.   | d | 5.   | a    | 6.    | d  | 7.   | с | 8.   | d | 9.   | b | 10.  | с |
| 11. | a | 12.  | с | 13.  | a | 14.  | a | 15.  | d    | 16.   | a  | 17.  | a | 18.  | b | 19.  | b | 20.  | a |
| 21. | b | 22.  | b | 23.  | a | 24.  | b | 25.  | b    | 26.   | с  | 27.  | b | 28.  | с | 29.  | a | 30.  | d |
| 31. | с | 32.  | d | 33.  | b | 34.  | с | 35.  | b    | 36.   | с  | 37.  | b | 38.  | a | 39.  | a | 40.  | a |
| 41. | а | 42.  | а | 43.  | с | 44.  | d | 45.  | b    | 46.   | а  | 47.  | с | 48.  | с | 49.  | с | 50.  | с |
| 51. | с | 52.  | b | 53.  | с | 54.  | d | 55.  | b    | 56.   | а  | 57.  | a | 58.  | с | 59.  | b | 60.  | с |
| 61. | a | 62.  | b | 63.  | С | 64.  | b | 65.  | а    | 66.   | d  | 67.  | a | 68.  | b | 69.  | а | 70.  | с |
| 71. | b | 72.  | a | 73.  | с | 74.  | a | 75.  | a    | 76.   | b  | 77.  | a | 78.  | a | 79.  | a | 80.  | с |
| 81. | b | 82.  | с | 83.  | a | 84.  | b | 85.  | b    | 86.   | d  | 87.  | с | 88.  | a | 89.  | a | 90.  | b |
| 91. | b | 92.  | b | 93.  | d | 94.  | a | 95.  | с    | 96.   | d  | 97.  | d | 98.  | d | 99.  | с | 100. | d |
| 101 | d | 102. | b | 103. | a | 104. | с | 105. | b    | 106.  | b  | 107. | b | 108. | с | 109. | b | 110. | b |
| 111 | с | 112. | с | 113. | d | 114. | с | 115. | b    | 116.  | a  | 117. | b | 118. | b | 119. | a | 120. | a |
| 121 | b | 122. | a | 123. | d |      |   |      |      |       |    |      |   |      |   |      |   |      |   |

### **GOPAL BHOOT**

CHAPTER MEASURES OF DISPERSION

## **PAST YEAR QUESTIONS**

| 1. | A student obtained                                                                                  | the mean and standar                      | rd deviation of 100 of                      | observations as                 | 40 and 5.1    |
|----|-----------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------|---------------------------------|---------------|
|    | instead of 40. The co                                                                               | aler discovered that n                    | e had wrongly copied                        | down an obser                   | Nov-2006      |
|    | (a) $5$                                                                                             | (b) 6                                     | (c) 3                                       | (d) 7                           | 100-2000      |
| 2. | If two samples of si                                                                                | zes 30 and 20 have 1                      | means as 55 and 60 a                        | and variances a                 | as 16 and 25  |
|    | respectively, then wh                                                                               | at would be the S. d. c                   | of the combined sampl                       | e size 50?                      | Feb-2007      |
|    | (a) 5.33                                                                                            | (b) 5.17                                  | (c) 5.06                                    | (d) 5                           |               |
| 3. | If two variables x an                                                                               | d y are related $2x + 3$                  | y - $7 = 0$ and the mea                     | n and mean de                   | viation about |
|    | mean of x are 1 and 0                                                                               | 0.3 respectively, then t                  | he co-efficient of mea                      | n deviation of y                | y about mean  |
|    | is:                                                                                                 |                                           |                                             |                                 | Feb-2007      |
|    | (a) -5                                                                                              | (b) 4                                     | (c) 12                                      | (d) 50                          |               |
| 4. | Measures of dispersion                                                                              | on are called averages $(1)$ $2^{nd}$     | of the                                      | order:                          | May-2007      |
| 5  | $\begin{array}{c} (a) 1^{-1} \\ \hline \mathbf{For } a \text{ sot of } 100 \text{ obs} \end{array}$ | $(0) 2^{-2}$                              | $(C) 3^{-1}$                                | (d) None                        | viotions is   |
| 5. | 11 cm and the sun                                                                                   | n of the squares of t                     | these deviations is 2                       | $57 \text{ cm}^2$ The c         | oefficient of |
|    | variation is : May-2                                                                                | 007                                       |                                             |                                 | oemenent of   |
|    | (a) 41.13%                                                                                          | (b) 42.13%                                | (c) 40.13%                                  | (d) None                        |               |
|    | Solution :                                                                                          |                                           |                                             |                                 |               |
|    | For 100 observation                                                                                 | n = 100                                   | Assumed means 4                             | Sum of devia                    | tion is – 11  |
|    | $\sum (x-4) = -11$                                                                                  | Sum of squares of de                      | eviation is 257 cm <sup>2</sup>             |                                 |               |
|    | $\overline{\sum}(x-4)^2 = 257$                                                                      |                                           |                                             |                                 |               |
|    | For C.V. (I need SD                                                                                 | & mean)                                   |                                             |                                 |               |
|    | $\sum (x-4) = -11$                                                                                  |                                           |                                             |                                 |               |
|    | $\sum x - \sum 4 = -11$                                                                             |                                           | $\sum (x \pm y) = \sum x \pm \sum y$        |                                 |               |
|    | $\sum_{n=1}^{\infty} x - n \times 4 = -11$                                                          |                                           | $\sum kx = k\Sigma x$                       |                                 |               |
|    | $\sum x - 100 \times 4 = -11$                                                                       |                                           | $\sum k = nk$                               |                                 |               |
|    | $\overline{\sum} x = 389$                                                                           |                                           | _                                           |                                 |               |
|    | Now, $\sum (x-4)^2 = \sum$                                                                          | $\int \left(x^2 - 8x + 16\right)$         | $= \sum x^2 - \sum 8x$                      | $x + \sum 16$                   |               |
|    | $257 = \Sigma x^2 - 8\Sigma x + n$                                                                  | ×16 257 =                                 | $\Sigma x^2 - 8 \times 389 + 100 \times$    | $(16)$ $\Sigma x^2 =$           | =1769         |
|    | $\Sigma r = 389$                                                                                    | )                                         | <b>SD</b> = $\sqrt{\frac{\Sigma x^2}{n}}$ - | $\left(\overline{x}\right)^2 =$ |               |
|    | $\frac{2n}{n} = \frac{300}{100}$                                                                    | 2.00                                      |                                             |                                 |               |
|    | Mean _ n 100                                                                                        | - 3.69                                    | $\sqrt{\frac{1769}{100}} - (3.89)^2$        |                                 |               |
|    | $CV = \frac{SD}{Mean} \times 100 =$                                                                 | $=\frac{1.59}{3.89} \times 100 = 41.13\%$ | = 1.59                                      |                                 |               |
| 6. | Which of the follow                                                                                 | ving companies A or                       | B is more consisten                         | t so far as the                 | payment of    |

b. Which of the following companies A of B is more consistent so far as the payment of dividend is concerned ? Dividend paid by A: 5 9 6 12 15 10 8 10

| What is the coefficient o | f range f | or the fo | llowing | distributi | on?                 |    | A | ug-2007 |  |
|---------------------------|-----------|-----------|---------|------------|---------------------|----|---|---------|--|
| (a) A (b)                 | ) B       |           | (c)     | Both A a   | (d) Neither A nor B |    |   |         |  |
| Dividend paid by B:       | 4         | 8         | 7       | 15         | 18                  | 9  | 6 | 6       |  |
| Dividend paid by A.       | 5         | 9         | 0       | 12         | 15                  | 10 | 0 | 10      |  |

34.1

| D                  | •   |          |    | •  |   |    |
|--------------------|-----|----------|----|----|---|----|
| - 1 1              | 10  | n        | or | CI | A | n  |
| $\boldsymbol{\nu}$ | 1.5 | U        |    | 31 | U | 11 |
|                    |     | <b>1</b> | -  |    | - |    |

GOPAL BHOOT

|     | Class Interval:                         | 10-19                                 | 20-29                | 30-39                     | 40-49                           | 50-59           |
|-----|-----------------------------------------|---------------------------------------|----------------------|---------------------------|---------------------------------|-----------------|
|     | Frequency:                              | 11                                    | 25                   | 16                        | 7                               | 3               |
|     | (a) 22 (b) 50                           |                                       | (c) 75.82            | 2                         | (d) 72.46                       |                 |
| 8.  | A sample of 35 observations             | s has the m                           | ean 80 and           | S.D. as 4.                | A second s                      | ample of 65     |
|     | observations from the same p            | opulation ha                          | s mean 70 a          | and S.D. 3.               | The S.D. of t                   | he combined     |
|     | sample is :                             |                                       |                      |                           |                                 | May-2007        |
| 0   | (a) 5.85 (b) 5.58                       | 4 <u>20</u> 1                         | (c) 10.23            | 3<br>                     | (d) None of $f = \frac{12}{12}$ | these           |
| 9.  | If x and y are related as $3x - 4$      | 4y = 20 and                           | the quartile         | deviation o               | 1 x 1s 12, the                  | 1 the quartile  |
|     | (a) $14$ (b) $15$                       |                                       | (c) 16               |                           | <b>e</b> (b)                    | May-2007        |
| 10. | The best measure of dispersion          | n is:                                 | (c) 10               |                           | (u) )                           | Feb-2008        |
|     | (a) O.D. (b) M.D                        |                                       | (c) Rang             | e                         | (d) S.D.                        | 100 2000        |
| 11. | If the mean and S.D. of x are a         | and b respe                           | ctively, then        | the S.D. of               | $\frac{x-a}{1}$ is:             | Feb-2008        |
|     | (a) $a/b$ (b) -1                        | · · · · · · · · · · · · · · · · · · · | (c) 1                |                           | b (d) ab                        |                 |
| 12. | Suppose a population A has              | 100 observ                            | vations 101.         | 102, 103,                 | 200                             | and another     |
|     | population B has 100 observa            | ations $151$ ,                        | 152, 153,            | 250. If                   | $V_A$ and $V_B$ r               | epresents the   |
|     | variance of the two population          | s respective                          | y, then $V_A/V$      | $V_B = :$                 |                                 | Feb-2008        |
|     | (a) 9/4 (b) 1                           | 1                                     | (c) 4/9              |                           | (d) 2/3                         |                 |
| 13. | The Mean and S.D. for group             | of 100 obser                          | vations are 6        | 65 and 7.03               | respectively 1                  | If 60 of these  |
|     | observations have mean and              | S.D. as 70 a                          | and 3 respect        | tively, what              | is the S.D. f                   | or the group    |
|     | comprising 40 observations?             |                                       |                      |                           |                                 | June-2008       |
| 14  | (a) $2.03$ (b) $4.03$                   | 1.4.1.                                | (c) 8.03             |                           | (d) 9:33                        | I               |
| 14. | The quartile deviation for the d        | $\frac{1}{2}$                         | 2                    | 4                         | 5                               | June-2008       |
|     |                                         | 3                                     | <u>з</u><br>Л        | 4<br>8                    | 3                               | 1               |
|     | $(a) \frac{1}{4}$ (b) $\frac{1}{2}$     | 5                                     | $\frac{4}{(c) 0.8'}$ | 75                        | 0 (b)                           | 1               |
| 15. | If X and Y are two random var           | riables then                          | (c) 0.01             | 15                        | (u) 0                           | Dec-2008        |
|     | (a) $v(x) + v(y)$                       |                                       | (b) $v(x)$           | + v (y) - 2v              | / (x, y)                        |                 |
|     | (c) $v(x) + v(y) + 2v(x, y)$            |                                       | (d) v (x)            | - v (y)                   |                                 |                 |
| 16. | Mean and S. D. of x is 50 and           | 5 respective                          | ely. Find mea        | an and S.D.               | of $\frac{x-50}{5}$             | <b>Dec-2008</b> |
|     | (a) (1,0) (b) (0, 1                     | )                                     | (c) (1,:)            |                           | $(d)^{5}(0,-1)$                 |                 |
| 17. | Mean and S. D. of a given se            | ,<br>t of is 1,500                    | ) and 400 res        | spectively.               | If there is an                  | increment of    |
|     | 100 in the first year and each          | observation                           | is hiked by 2        | 20% in 2 <sup>nd</sup>    | years, then fir                 | nd new mean     |
|     | and S. D.                               |                                       |                      |                           |                                 | Dec-2008        |
|     | (a) 1920, 480 (b) 1920                  | ), 580                                | (c) 1600             | , 480                     | (d) 1600, 4                     | 00              |
|     | If 5 is subtracted from each ob         | servation of                          | some certain         | n item then i             | its co-efficien                 | t of variation  |
|     | rs 10% and 11 5 is added to e           |                                       | in its coeffic       | cient of vali             |                                 | Dec-2008        |
|     | (a) $8\%$ (b) $7.5\%$                   |                                       | (c) 4%               |                           | (d) None of                     | f these         |
| 18. | Inter Ouartile Range is                 | of Ou                                 | artile Deviati       | ion.                      | (u) 110110 01                   | June-2009       |
|     | (a) Half (b) Doul                       | ble                                   | (c) Tripl            | e                         | (d) Equal                       |                 |
|     | Answer:                                 |                                       |                      |                           |                                 |                 |
|     | ( <b>b</b> ) Quartile Deviation or Se   | mi – inter q                          | uartile Range        | $e = \frac{Q_{3-Q_1}}{2}$ |                                 |                 |
|     | Inter $-$ ouartile Range = (            | $D_{2} - O_{1}$                       | U                    | 2                         |                                 |                 |
|     | Therefore, inter-quartile i             | ange is doub                          | ole of quartile      | e deviation.              | In other word                   | ls, quartile    |
|     | deviation is half of inter-             | quartile rang                         | ge.                  |                           |                                 | •               |
| 19. | The sum of squares of deviati           | on from me                            | an of 10 obs         | servations is             | s 250. Mean o                   | of the data is  |
|     | 10. Find the co-efficient of var        | riation.                              |                      |                           |                                 | June-2009       |
|     | (a) 10% (b) 25%                         |                                       | (c) 50 %             |                           | (d) 0%                          |                 |
|     | Answer:                                 |                                       |                      |                           |                                 |                 |
|     | (c) S D = $\sqrt{\sum (x - \bar{x})^2}$ |                                       |                      |                           |                                 |                 |
|     | $(C)$ S.D. $-\sqrt{N}$                  | 2                                     |                      |                           |                                 |                 |
|     | In the given data, $\sum (x - x)$       | $)^2 = 250$                           |                      |                           |                                 |                 |

N = 10Mean = 10Therefore, S.D/=  $\sqrt{\frac{250}{10}}$ S.D. = 5So, coefficient of variation =  $\frac{S.D.}{Mean} \times 100 = \frac{5}{10} \times 100 = 50\%$ If  $L_1$  = highest observation and  $L_2$  = smallest observation, then Coefficient of Range = **Dec**-20. 2009 (a)  $\frac{L_1 \times L_2}{L_1 / L_2} \times 100$  (b)  $\frac{L_1 - L_2}{L_1 + L_2} \times 100$  (c)  $\frac{L_1 + L_2}{L_1 - L_2} \times 100$  (d)  $\frac{L_1 / L_2}{L_1 \times L_2} \times 100$ **Answer:** (**b**) Coefficient of Range =  $\frac{highest \ observation-samllest \ observation}{highest \ observation+samllest \ observation}$ =  $\frac{L_1 - L_2}{L_1 + L_2} \times 100$ The equation of a line is 5x + 2y = 17. Mean deviation of y about mean is 5. Calculate mean 21. deviation of x about mean. **Dec-2009** (a) - 2(c) - 4(d) Norte (b) 2**Answer: (b)** 5x + 2y = 17 $x = -\frac{2y}{5} + \frac{17}{5}$ M.D. of  $x = b \times M.D.$  of y. =  $\left[-\frac{2y}{5}\right] \times 5$ =  $\frac{2}{5} \times 5$ - 2 22. If variance of x is 5, then find the variance of (2 - 3x)**Dec-2009** (a) 10 (b) 45 (c) 5(d) -13 Solution : Variance of x = 5  $SD = \sqrt{5}$ Let 4 = 2 - 3xVariance =  $(3\sqrt{5})^2$ SD of 4 3 × SD of x = 3 ×  $\sqrt{5}$ = 45 The variance of data : 3,4,5,8 is 23. **Dec-2010** (a) 4.5(c) 5.5 (b) 3.5 (d) 6.5 **Answer: (b)** 3, 4, 5, 8 Variance  $= \frac{\sum x^2}{n} - \left(\frac{\sum x}{n}\right)^2$  $= \frac{114}{4} - 25$  $= \frac{114 - 100}{4} = \frac{14}{4}$  $= \frac{7}{2}$ = 3.524. Given the observations : 4,9,11,14,37. The Mean deviation about the Median is **Dec-2010** (a) 11 (b) 8.5 (c) 7.6(d) 7.45 **Answer:** (c) 4, 9, 11, 14, 37 Median =  $\left(\frac{n+1}{2}\right)^{th}$  term  $=\left(\frac{5+1}{2}\right)^{th}$  term  $= 3^{rd}$  term = 11

[d] = [x-11]

Х

4 7 9 2 11 0 14 3 37 26 38 Mean deviation about median M.D.  $=\frac{\sum[d]}{n}=\frac{38}{5}=7.6$ 25. If all observations in a distribution are increased by 6, then the variance of the series will be **June-2010** (a) Increased (b) Decreased (c) Unchanged (d) None of these. The standard deviation of the weights (in kg) of the students of a class of 50 students was 26. calculated to be 4.5 kg. Later on it was found that due to some fault in weighing machine, the weight of each student was under measured by 0.5 kg. The correct standard deviation of the weight will be: Dec-2011 b) Greater than 4.5 a) Less than 4.5 c) Equal to 4.5 d) Can not be determined **Solution : 55** SD not affect = 4.5 Kg. **Dec-2011** For Normal distribution the relation between deviation (S.D) is 27. a) Q.D > S.Db) Q.D < S.D c) Q.D = S.Dd) None of the above **Answer: (b)** We know  $Q.D = \frac{2}{3}S.D$ => 0.D < S.D.If standard deviation of first 'n' natural numbers is 2 then value of 'n' is **June-2012** 28. (a) 10 (b) 7 (c) 6(d) 5**Answer: (b)** S.D. of First 'n' natural Numbers =  $\sqrt{\frac{n^2-1}{12}}$  $\frac{2}{1} = \sqrt{\frac{n^2 - 1}{12}}$  $4 = \frac{n^2 - 1}{12}$  $n^2 - 1 = 48$  $n^2 = 49 \implies n = 7$ The standard deviation is independent of change of 29. June-2012 (a) Scale (c) Both origin and scale (d) None of these. (b) Origin Answer: (b) We know, S.D =  $\sqrt{\frac{\sum x^2}{n} - \left(\frac{\sum x}{n}\right)^2} = \sqrt{\frac{\sum d^2}{n} - \left(\frac{\sum d}{n}\right)^2}$ Where d = x - AA = Assumed meanComparing above both the formula's, we immediately conclude that S.D. is independent of change of origin. If Standard deviation of x is  $\sigma$ , then Standard deviation of  $\left(\frac{ax+b}{c}\right)$ , where a, b and c (c ± 0) **30. Dec-2012** are arbitrary constants, will be (d)  $\left| \frac{a}{c} \right| \sigma$ (b) $\frac{a\sigma+b}{c}$  $(c)\frac{a}{c}.\sigma$ (a) σ Answer : (d) "S.D. of  $x = \sigma$ Let  $y = \frac{ax+b}{c}$ 

|     |                                                                                                                    | $y = \frac{dx}{c} + \frac{b}{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |                      |
|-----|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------------------|
|     |                                                                                                                    | $\mathbf{v} = \frac{b}{b} \pm \frac{a}{a} \mathbf{v}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |                      |
|     | S D                                                                                                                | $y = \frac{1}{c} \frac{1}{c} \frac{x}{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | fx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    |                      |
|     | 5.0                                                                                                                | $\begin{bmatrix} 0 & y \\ y \\ z \end{bmatrix} \begin{bmatrix} a \\ z \end{bmatrix} = \begin{bmatrix} a \\ z \end{bmatrix} $ | 1 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    |                      |
| 21  |                                                                                                                    | $= \left[ \frac{-}{c} \right] \sigma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>C 1</b> <sup>1</sup> <b>1 1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    | • .                  |
| 31. | Which of the                                                                                                       | following measure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | es of dispersion is use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | d for calculating the              | consistency          |
|     | (a) Quartile de                                                                                                    | viation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (b) Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | d Deviation                        | Dec-2012             |
|     | (c) Coefficient                                                                                                    | of variation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (d) None of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | the above                          |                      |
| 32. | If sum of squa                                                                                                     | ares of the values =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | = 3390, N = 30 and stand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | dard deviation = 7, fin            | d out mean.          |
|     | June-2013                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |                      |
|     | a) 113                                                                                                             | b) 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | c) 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | d) None of t                       | hese                 |
|     | Answer:                                                                                                            | τ Σ d <sup>2</sup> 2200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    |                      |
|     | (C) S.D.                                                                                                           | $= 7, \Sigma u^{-} = 5590,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N = 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |                      |
|     | wer                                                                                                                | $\sqrt{\sum d^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |                      |
|     |                                                                                                                    | $S.D. = \sqrt{\frac{2 u^2}{n} - (2 u^2)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $(\bar{x})^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |                      |
|     |                                                                                                                    | $7 = \sqrt{\frac{3390}{30}} -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $(\bar{x})^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |                      |
|     | on                                                                                                                 | squaring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |                      |
|     |                                                                                                                    | $49 = \frac{3390}{30} - (\bar{x})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $()^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                    |                      |
|     |                                                                                                                    | $49 = 113 - (\bar{x})^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |                      |
|     |                                                                                                                    | $(\bar{x})^2 = 113 - 49$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |                      |
|     |                                                                                                                    | $(\bar{x})^2 = 64$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |                      |
|     |                                                                                                                    | $\bar{x} = \sqrt{64}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |                      |
| 33. | If the mean o                                                                                                      | = 8<br>f a frequency district                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ribution is 100 and coe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | efficient of variation i           | s 45% then           |
|     | standard devia $a$                                                                                                 | tion is: b) $0.45$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\sim$ 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | d) <b>450</b>                      | June-2013            |
|     | Answer:                                                                                                            | 0) 0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0) 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | u) 450                             |                      |
|     | (a) Give                                                                                                           | en Mean $\bar{x} = 100$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |                      |
|     | Coe                                                                                                                | ff. of variation (C.V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | V.) = 45%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    |                      |
|     |                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $J = \frac{S.D.}{100}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |                      |
|     |                                                                                                                    | C.V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $V_{.} = \frac{1}{100} \times 100$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    |                      |
|     |                                                                                                                    | C.V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $V \cdot -\frac{1}{A.M.} \times 100$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    |                      |
|     |                                                                                                                    | C.V<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $45 = \frac{S.D.}{100} \times 100$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    |                      |
| 34  | Find the variar                                                                                                    | C.V<br>4<br>S.:<br>ace given that the A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $45 = \frac{S.D.}{100} \times 100$<br>D. = 45<br>rithmetic Mean = (8 + 4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ۱/2                                | Dec-2013             |
| 34. | Find the variar<br>(a) 2                                                                                           | C.V<br>4<br>S.<br>nce given that the A<br>(b) 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $45 = \frac{S.D.}{100} \times 100$<br>D. = 45<br>rithmetic Mean = (8 + 4)<br>(c) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | )/2<br>(d) 4                       | Dec-2013             |
| 34. | Find the variar<br>(a) 2<br><b>Answer:</b>                                                                         | C.V<br>4<br>S.<br>ace given that the A<br>(b) 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $45 = \frac{S.D.}{100} \times 100$<br>D. = 45<br>rithmetic Mean = (8 + 4)<br>(c) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | )/2<br>(d) 4                       | Dec-2013             |
| 34. | Find the variar<br>(a) 2<br>Answer:<br>(d) Given                                                                   | C.V<br>4<br>S.<br>nce given that the A<br>(b) 6<br>Arithmetic Mean =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $45 = \frac{S.D.}{100} \times 100$ $45 = \frac{S.D.}{100} \times 100$ $D. = 45$ rithmetic Mean = (8 + 4)<br>(c) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | )/2<br>(d) 4                       | Dec-2013             |
| 34. | Find the variar<br>(a) 2<br>Answer:<br>(d) Given<br>He                                                             | C.V<br>4<br>S.<br>nce given that the A<br>(b) 6<br>Arithmetic Mean =<br>re Largest value (L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $45 = \frac{S.D.}{100} \times 100$<br>D. = 45<br>rithmetic Mean = (8 + 4)<br>(c) 1<br>$\frac{(8+4)}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | )/2<br>(d) 4                       | Dec-2013             |
| 34. | Find the variar<br>(a) 2<br>Answer:<br>(d) Given<br>He<br>Sn                                                       | C.V<br>4<br>S.<br>ace given that the A<br>(b) 6<br>Arithmetic Mean =<br>re Largest value (L)<br>nallest values (S) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $45 = \frac{S.D.}{100} \times 100$ $45 = \frac{S.D.}{100} \times 100$ $D. = 45$ in the tic Mean = (8 + 4)<br>(c) 1 $\frac{(8+4)}{2}$ $3 = 8$ 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | )/2<br>(d) 4                       | Dec-2013             |
| 34. | Find the variar<br>(a) 2<br><b>Answer:</b><br>(d) Given<br>He<br>Sn<br>Ra                                          | C.V<br>4<br>S.<br>acce given that the A<br>(b) 6<br>Arithmetic Mean =<br>are Largest value (L)<br>hallest values (S) =<br>nge = $L - S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $45 = \frac{S.D.}{100} \times 100$<br>D. = 45<br>rithmetic Mean = (8 + 4)<br>(c) 1<br>$\frac{(8+4)}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | )/2<br>(d) 4                       | Dec-2013             |
| 34. | Find the variar<br>(a) 2<br>Answer:<br>(d) Given<br>He<br>Sn<br>Ra                                                 | C.V<br>4<br>S.T<br>ace given that the A<br>(b) 6<br>Arithmetic Mean =<br>re Largest value (L)<br>hallest values (S) =<br>nge = $L - S$<br>= $8 - 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $45 = \frac{S.D.}{100} \times 100$ $45 = \frac{S.D.}{100} \times 100$ $D. = 45$ in the tic Mean = (8 + 4)<br>(c) 1 $\frac{(8+4)}{2}$ $1 = 8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | )/2<br>(d) 4                       | Dec-2013             |
| 34. | Find the variar<br>(a) 2<br>Answer:<br>(d) Given<br>He<br>Sm<br>Ra                                                 | C.V<br>4<br>S.<br>acce given that the A<br>(b) 6<br>Arithmetic Mean =<br>the re Largest value (L)<br>hallest values (S) =<br>nge = L - S<br>= 8 - 4<br>= 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $45 = \frac{S.D.}{100} \times 100$<br>D. = 45<br>rithmetic Mean = (8 + 4)<br>(c) 1<br>$\frac{(8+4)}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | )/2<br>(d) 4                       | Dec-2013             |
| 34. | Find the variar<br>(a) 2<br>Answer:<br>(d) Given<br>He<br>Sm<br>Ra<br>we k                                         | C.V<br>4<br>S.<br>ace given that the A<br>(b) 6<br>Arithmetic Mean =<br>are Largest value (L)<br>hallest values (S) =<br>nge = L - S<br>= 8 - 4<br>= 4<br>now that<br>Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $45 = \frac{S.D.}{100} \times 100$ $45 = \frac{S.D.}{100} \times 100$ $D. = 45$ in the tic Mean = (8 + 4) (c) 1 $\frac{(8+4)}{2}$ $1 = 8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | )/2<br>(d) 4                       | <b>Dec-2013</b>      |
| 34. | Find the variar<br>(a) 2<br>Answer:<br>(d) Given<br>He<br>Sm<br>Ra<br>we k<br>S.E                                  | C.V<br>4<br>S.1<br>acce given that the A<br>(b) 6<br>Arithmetic Mean =<br>re Largest value (L)<br>hallest values (S) =<br>nge = L - S<br>= 8 - 4<br>= 4<br>now that<br>D = $\frac{Range}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $45 = \frac{S.D.}{100} \times 100$ $45 = \frac{S.D.}{100} \times 100$ $D. = 45$ $(c) 1$ $\frac{(8+4)}{2}$ $4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | )/2<br>(d) 4                       | Dec-2013             |
| 34. | Find the variar<br>(a) 2<br>Answer:<br>(d) Given<br>He<br>Sn<br>Ra<br>we k<br>S.E<br>S.I                           | C.V<br>4<br>S.1<br>acce given that the A<br>(b) 6<br>Arithmetic Mean =<br>are Largest value (L)<br>hallest values (S) =<br>nge = L - S<br>= 8 - 4<br>= 4<br>now that<br>D = $\frac{Range}{2}$<br>D = $\frac{4}{2}$ = 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $45 = \frac{S.D.}{100} \times 100$ $45 = \frac{S.D.}{100} \times 100$ $D. = 45$ in the tic Mean = (8 + 4)<br>(c) 1 $\frac{(8+4)}{2}$ $3 = 8$ 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | )/2<br>(d) 4                       | <b>Dec-2013</b>      |
| 34. | Find the variar<br>(a) 2<br>Answer:<br>(d) Given<br>He<br>Sm<br>Ra<br>we k<br>S.D<br>S.D<br>S.D<br>Vari            | C.V<br>4<br>S.1<br>acce given that the A<br>(b) 6<br>Arithmetic Mean =<br>re Largest value (L)<br>hallest values (S) =<br>nge = L - S<br>= 8 - 4<br>= 4<br>now that<br>$D = \frac{Range}{2}$<br>$D = \frac{4}{2} = 2$<br>iance = (S. D) <sup>2</sup> = (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $(1)^{2} = \frac{7}{AM} \times 100^{2}$ $(1)^{2} = 45^{2}$ $(2)^{2} = 4^{2}$ $(2)^{2} = 4^{2}$ $(3)^{2} = 4^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | )/2<br>(d) 4                       | <b>Dec-2013</b>      |
| 34. | Find the variar<br>(a) 2<br>Answer:<br>(d) Given<br>He<br>Sn<br>Ra<br>we k<br>S.E<br>S.I<br>Vari<br>Coefficient of | C.V<br>4<br>S.1<br>ace given that the A<br>(b) 6<br>Arithmetic Mean =<br>the Largest value (L)<br>hallest values (S) =<br>nge = L - S<br>= 8 - 4<br>= 4<br>now that<br>0 = $\frac{Range}{2}$<br>D = $\frac{4}{2}$ = 2<br>iance = (S. D) <sup>2</sup> = (2<br>mean deviation abo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $45 = \frac{S.D.}{100} \times 100$ $45 = \frac{S.D.}{100} \times 100$ $D. = 45$ $(c) 1$ $\frac{(8+4)}{2}$ $(c) = 8$ $4$ $(c) = 8$ $(c) = 8$ $(c) = 8$ $(c) = 1$ $(c) = $ | )/2<br>(d) 4<br>atural numbers is. | Dec-2013<br>Dec-2013 |

#### Answer:

(c) The First 9 natural Number are 1, 2, 3, 4, 5, 6, 7, 8, 9  $\sum r$  (1+2+3+4+5+6+7+8+9) 45

| Mean $\bar{x} = \frac{2x}{N} = \left(\frac{1+2+3}{N}\right)$ | $\left(\frac{+4+5+6+7+8+9}{9}\right) = \frac{45}{9} = 5$ |                       |
|--------------------------------------------------------------|----------------------------------------------------------|-----------------------|
| Х                                                            | $\overline{x}$                                           | $[d] = [x - \bar{x}]$ |
| 1                                                            | 5                                                        | [1-5] = - 4           |
| 2                                                            | 5                                                        | [2-5] = -3            |
| 3                                                            | 5                                                        | [3-5] = -2            |
| 4                                                            | 5                                                        | [4-5] = -1            |
| 5                                                            | 5                                                        | [5-5] = 0             |
| 6                                                            | 5                                                        | [6-5] = 1             |
| 7                                                            | 5                                                        | [7-5] = 2             |
| 8                                                            | 5                                                        | [8-5] = 3             |
| 9                                                            | 5                                                        | [9-5] = 4             |
| N = 9                                                        |                                                          | $\sum[d] = 20$        |

Mean Deviation  
M.D. 
$$=\frac{\sum[d]}{N} = \frac{20}{9}$$
  
Coeff of M.D  $=\frac{M.D.}{Mean} \times 100$   
 $=\frac{\frac{20}{9} \times 100}{5}$   
 $=\frac{20 \times 100}{9 \times 5} = \frac{400}{9}$ 

36. If mean = 5, Standard deviation = 2.6, median = 5 and quartile deviation = 1.5, then the coefficient of quartile deviation equals?
(a) 35
(b) 39
(c) 30
(d) 32.

Answer:

(c) Given

Mean  $\bar{x} = 5$ , S.D. ( $\sigma$ ) = 2.6, Median = 5 and Q.D. = 1.5 Coeff of Q.D. =  $\frac{Q_3 - Q_1}{Q_3 + Q_1} \times 100$ =  $\frac{\frac{Q_3 - Q_1}{2}}{\frac{Q_3 + Q_1}{2}} \times 100$ =  $\frac{Q.D.}{Median} \times 100$ =  $\frac{1.5}{5} \times 100$ =  $\frac{150}{5}$ = 30

**37.** What will be the probable value of mean deviation? when  $Q_3 = 40$  and  $Q_1 = 15$  **June-2014** a) 17.50 b) 18.75 c) 15.00 d) None of the above **Answer:** 

(c) 
$$Q_3 = 40$$
 and  $Q_1 = 15$   
 $Q. D. = \frac{Q_3 - Q_1}{2} = \frac{40 - 15}{2} = \frac{25}{2} = 12.50$   
 $5 \text{ M.D.} = 6 \text{ Q.D.} => \text{ M.D.} = \frac{6}{5} \text{ Q.D.}$   
 $= \frac{6}{5} \times 12.50 = 15$ 

**38.** The formula for range of middle 50% items of a series is : a)  $Q_3 - Q_1$  b)  $Q_3 - Q_2$  c)  $Q_2 - Q_1$  d)  $\frac{Q_3 - Q_1}{2}$ 

Answer:

(d) The formula for Range of middle 50% items of a series is (Q.D.). Q.D.= $\frac{Q_3-Q_1}{2}$ 

**39.** If the first quartile is 142 and semi-inter quartile range is 18, then the value of median is : **Dec-2014** 

| Dispersion   | 1                                                                                                                                                                                                                     | 34.7                                                                                                                                                                                                                | ,                                              | GC                                  | <b>DPAL BHOOT</b>                       |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------|-----------------------------------------|
|              | a) 151 b<br>Answer:<br>(b) First Quartile Q<br>Semi Inter quar                                                                                                                                                        | ) 160<br>1 = 142<br>tile range (Q.D.) = 18<br>$\frac{Q_3 - Q_1}{2} = 18$<br>$Q_3 - Q_1 = 36$<br>$Q_3 - 142 = 36$<br>$Q_3 = 36$<br>Third Quartile Q<br>Median = $\frac{Q_3 + Q_1}{2}$<br>$= \frac{142 + 178}{220}^2$ | c) 178<br>5 + 142<br>3 = 178                   | d) None of th                       | ese                                     |
| <b>40.</b>   | The quartile deviation i<br>a) 2/3 S.D b<br>Answer:<br>(a) We know that<br>4 S.D. = 6 Q.<br>then Q.D. = $\frac{2}{3}$ S.D                                                                                             | $=\frac{320}{2} = 160$<br>s:<br>) 4/5 S.D<br>D.<br>$\frac{4}{5}$ S.D.                                                                                                                                               | c) 5/6 S.D                                     | d) None of th                       | Dec-2014<br>ese                         |
| <b>41.</b>   | The standard deviation<br>s<br>a) 50 b<br>Answer:<br>(a) S.D. of x = 10<br>Given y = 50 + 3<br>5x - y + 50 = 0<br>$b = -\frac{coefficient o}{coefficient o}$<br>S.D. of y =  3  S<br>=  5  ×<br>= 5 ×<br>= 50         | of a variable x is know<br>) 100<br>5x<br>$\frac{fx}{fy} = \frac{-5}{-1} = 5$<br>S.D. of x<br>10<br>10                                                                                                              | wn to be 10. The stand<br>c) 10                | lard deviation<br>d) 500            | of 50 + 5x<br><b>Dec-2014</b>           |
| <b>42.</b> ( | Coefficient of quartile of<br>a) Quartile deviation ×<br>c) Quartile deviation ×<br>Answer:<br>(a) Coeff. of Q.D.= $=\frac{\frac{Q_{3}-Q_{1}}{2}}{\frac{Q_{3}+Q_{1}}{2}} \times 1$ $=\frac{Quartile De}{Quartile De}$ | deviation is equal to :<br>100/median<br>100/mode<br>$= \frac{Q_{3-Q_1}}{Q_{3+Q_1}} \times 100$ 100<br>viation×100                                                                                                  | b) Quartile deviation :<br>d) None             | × 100/mean                          | June-2015                               |
| <b>43.</b> 1 | a) S.D. would be increa<br>c) Quartile deviation we                                                                                                                                                                   | re increased by 5, then<br>sed by 5<br>ould be increased by 5                                                                                                                                                       | b) Mean deviation wo<br>d) All the three would | ould be increas<br>I not be increas | <b>June-2015</b><br>ed by 5<br>sed by 5 |
| <b>44.</b>   | What is value of mean of a) 5.20 b                                                                                                                                                                                    | deviation about mean f<br>) 7.20                                                                                                                                                                                    | From the number 5, 8, 6<br>c) 1.44             | 5, 3 and 4 ? :<br>d) 2.23           | Dec - 2015                              |

| (c) Given data 5, 4, 5, 0, 6<br>Mean $\bar{x} = \frac{2x}{N} = \frac{3+4+5+6+8}{5} = \frac{26}{5} = 5.2$<br>$\frac{x}{4} + \frac{x}{5.2} + \frac{1}{3} + \frac{5.2}{5} + \frac{1}{5.2} + \frac{1}{2.2} + 1$                                                                                                                                                        |            | Answer:                                                                           | 0                                           |                                                      |                                                  |            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------------|--------------------------------------------------|------------|
| $\frac{x}{x} = \frac{x}{y} = \frac{x}{z} = \frac{x}{z} = \frac{x}{z}$ $\frac{x}{z} = \frac{x}{z} = \frac{x}{z} = \frac{x}{z} = \frac{x}{z}$ $\frac{x}{z} = \frac{x}{z}$ $\frac{x}$ |            | (c) Given data 3, 4, 5, 6,<br>Mean $\bar{x} - \frac{\sum x}{2} - \frac{3+4+5}{3}$ | $\frac{8}{5+6+8} - \frac{26}{2} - 52$       |                                                      |                                                  |            |
| x   x   x   x   x   x   x   x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | Nicall $x = \frac{1}{N}$ 5                                                        | $\frac{-5}{5} = \frac{-5.2}{5}$             |                                                      |                                                  |            |
| $\frac{3}{4} + \frac{5}{5} + \frac{3}{2} + \frac{3}{2} + \frac{5}{2} + \frac{1}{2} + \frac{2}{2} + \frac{1}{2} + \frac{1}$ |            | x                                                                                 |                                             | x                                                    | $ \mathbf{d}  =  \mathbf{x} - \bar{\mathbf{x}} $ |            |
| $\frac{4}{5.2} + \frac{5.2}{5.2} + \frac{14-5.2}{5.2} + \frac{1.2}{5.2} +$                                                                                                                                                                                                                                             |            | 3                                                                                 |                                             | 5.2                                                  | 3-5.2  = 2.2                                     |            |
| $\frac{5}{6} + \frac{5.2}{5.2} + \frac{5-5.2}{6-5.2} + \frac{0.2}{0.8} + \frac{5.2}{5.2} + \frac{5-5.2}{5.2} + \frac{0.2}{5.2} + \frac{5-5.2}{5.2} + \frac{0.2}{5.2} + \frac{5-5.2}{5.2} + \frac{0.2}{5.2} + \frac{0.2}{5.2} + \frac{5-5.2}{5.2} $                                                                                                                                                                                                                                                                                                         |            | 4                                                                                 |                                             | 5.2                                                  | 4-5.2  = 1.2                                     |            |
| $\frac{6}{8} + \frac{5.2}{2} + \frac{6-5.2}{8-5.2} = 2.8}{\Sigma   d  = 7.2}$ $M.D. = \frac{\Sigma   d }{N} = \frac{7.2}{5} = 1.44$ 45. For the observation of 6, 4, 1, 6, 5, 10, 4, 8 the range is :<br>a) 10 b) 9 c) 8 d) None<br>Answer:<br>(b) Given data in Ascending Order<br>1, 4, 4, 5, 6, 6, 8, 10<br>Largest value (L) = 10<br>Smallest value (S) = 1<br>Range (R) = L-S<br>= 10-1<br>= 9<br>46. If a variance of a random variable 'x' is 23, then what is variance of 2x + 10? Dec - 2015<br>a) 56 b) 33 c) 46 d) 92<br>Answer:<br>(d) Given Variance of x = 23<br>V(x) = 23<br>S.D. of x = $\sqrt{23}$<br>Given y= 2x + 10<br>2x - y + 10 = 0<br>$b = -\frac{coef/ictent of x}{coef/ictent of y} = \frac{-2}{-1} = 2$<br>S.D. of Y =  b  S.D. of x<br>= $\frac{12!\sqrt{23}}{23}$<br>Variance of y = (S.D. of y) <sup>2</sup> = ( $2\sqrt{23}$ ) <sup>2</sup><br>= $\frac{2^2 \times 23}{23}$<br>Variance of y = (S.D. of y) <sup>2</sup> = ( $2\sqrt{23}$ ) <sup>2</sup><br>= $\frac{2}{2} \times 23$<br>= $4 \times 23$<br>= 92<br>47. If variance = 148.6 and $\bar{x} = 40$ , the coefficient of variation is :<br>a) $37.15$ b) $30.48$ c) $33.75$ d) None of the above<br>Answer:<br>(b) Variance = $\frac{148.6}{25}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 5                                                                                 |                                             | 5.2                                                  | 5-5.2  = 0.2                                     |            |
| $\frac{8}{N=5} + \frac{5.2}{N} + \frac{8-5.2}{2} + \frac{2.8}{2}$ $\frac{8-5.2}{N} + \frac{2.8}{2} + \frac{12.8}{2} + 12.$                                                                                                                                                                                                   |            | 6                                                                                 |                                             | 5.2                                                  | 6-5.2  = 0.8                                     |            |
| $M.D. = \frac{\sum  d }{N} = \frac{\sum  d }{2} = \frac{7.2}{2} = 1.44$ 45. For the observation of 6, 4, 1, 6, 5, 10, 4, 8 the range is :<br>a) 10 b) 9 c) 8 d) None<br>Answer:<br>(b) Given data in Ascending Order<br>1, 4, 4, 5, 6, 6, 8, 10<br>Largest value (L) = 10<br>Smallest value (S) = 1<br>Range (R) = L - S<br>= 10 - 1<br>= 9<br>46. If a variance of a random variable 'x' is 23, then what is variance of 2x + 10? Dec - 2015<br>a) 56 b) 33 c) 46 d) 92<br>Answer:<br>(d) Given Variance of x = 23<br>V(x) = 23<br>S.D. of x = $\sqrt{23}$<br>Given y= 2x + 10<br>2x - y + 10 = 0<br>b = $-\frac{coefficient of x}{coofficient of y} = \frac{-2}{-1} = 2$<br>S.D. of Y =  b  S.D. of x<br>= $ 2 .\sqrt{23}$<br>= $2\sqrt{23}$<br>Variance of y = (S.D. of y) <sup>2</sup> = $(2\sqrt{23})^{2}$<br>= $4 \times 23$<br>= $92$<br>47. If variance = 148.6 and $\bar{x} = 40$ , the coefficient of variation is :<br>a) 37.15 b) 30.48 c) 33.75 d) None of the above<br>Answer:<br>(b) Variance = $-\frac{148.6}{25}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | 8                                                                                 |                                             | 5.2                                                  | 8-5.2  = 2.8                                     |            |
| M.D. $=\frac{43}{N} = \frac{1.44}{5}$<br>45. For the observation of 6, 4, 1, 6, 5, 10, 4, 8 the range is : Dec - 2015<br>a) 10 b) 9 c) 8 d) None<br>Answer:<br>(b) Given data in Ascending Order<br>1, 4, 4, 5, 6, 6, 8, 10<br>Largest value (L) = 10<br>Smallest value (S) = 1<br>Range (R) = L - S<br>= 10 - 1<br>= 9<br>46. If a variance of a random variable 'x' is 23, then what is variance of 2x + 10? Dec - 2015<br>a) 56 b) 33 c) 46 d) 92<br>Answer:<br>(d) Given Variance of x = 23<br>V(x) = 23<br>S.D. of x = $\sqrt{23}$<br>Given y= 2x + 10<br>2x - y + 10 = 0<br>$b = -\frac{coeff ictent of x}{coeff ictent of y} = \frac{-2}{-1} = 2$<br>S.D. of Y =  b  S.D. of x<br>= $ 2 \sqrt{23}$<br>$= 2\sqrt{23}$<br>Variance of y = (S.D. of y) <sup>2</sup> = $(2\sqrt{23})^2$<br>$= 4 \times 23$<br>= 92<br>47. If variance = 148.6 and $\bar{x} = 40$ , the coefficient of variation is : Dec - 2015<br>a) 37.15 b) 30.48 c) 33.75 d) None of the above<br>Answer:<br>(b) Variance = $148.6$ and $\bar{x} = 40$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | N = 5                                                                             | Σ[α                                         | 1] 72                                                | $\sum  d  = 7.2$                                 |            |
| a) 10 b) 9 c) 8 d) None<br>Answer:<br>(b) Given data in Ascending Order<br>1, 4, 4, 5, 6, 8, 10<br>Largest value (L) = 10<br>Smallest value (S) = 1<br>Range (R) = L-S<br>= 10-1<br>= 9<br>46. If a variance of a random variable 'x' is 23, then what is variance of $2x + 10$ ? Dec - 2015<br>a) 56 b) 33 c) 46 d) 92<br>Answer:<br>(d) Given Variance of $x = 23$<br>V(x) = 23<br>S.D. of $x = \sqrt{23}$<br>Given $y = 2x + 10$<br>2x - y + 10 = 0<br>$b = -\frac{coefficient of x}{coefficient of y} = \frac{-2}{-1} = 2$<br>S.D. of $Y =  b $ S.D. of $x$<br>$=  2 \sqrt{23}$<br>$= 2\sqrt{23}$<br>Variance of $y = (S.D. of y)^2 = (2\sqrt{23})^2$<br>$= 2^2 \times 23$<br>$= 4 \times 23$<br>= 92<br>47. If variance = 148.6 and $\bar{x} = 40$ , the coefficient of variation is : Dec - 2015<br>a) 37.15 b) 30.48 c) 33.75 d) None of the above<br>Answer:<br>(b) Variance $= 148.6$<br>S.D. $y = -\frac{148.6}{5}$<br>S.D. $y = -\frac{148.6}{5}$<br>S.D. $y = -\frac{148.6}{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 45.        | For the observation of 6, 4, 1,                                                   | M.D. $=\frac{210}{N}$<br>6, 5, 10, 4, 8 the | $\frac{1}{5} = \frac{7.2}{5} = 1.44$<br>e range is : | ŀ                                                | Dec - 2015 |
| (b) Given data in Ascending Order<br>1, 4, 4, 5, 6, 6, 8, 10<br>Largest value (L) = 10<br>Smallest value (S) = 1<br>Range (R) = L-S<br>= 10-1<br>= 9<br>46. If a variance of a random variable 'x' is 23, then what is variance of 2x + 10? Dec - 2015<br>a) 56 b) 33 c) 46 d) 92<br>Answer:<br>(d) Given Variance of x = 23<br>V(x) = 23<br>S.D. of x = $\sqrt{23}$<br>Given y= 2x + 10<br>2x - y + 10 = 0<br>$b = -\frac{coefficient of x}{coefficient of y} = \frac{-2}{-1} = 2$<br>S.D. of Y =  b  S.D. of x<br>= $ 2 .\sqrt{23}$<br>$= 2\sqrt{23}$<br>Variance of y = (S.D. of y) <sup>2</sup> = $(2\sqrt{23})^2$<br>$= 2^2 \times 23$<br>$= 4 \times 23$<br>= 92<br>47. If variance = 148.6 and $\bar{x} = 40$ , the coefficient of variation is : Dec - 2015<br>a) 37.15 b) 30.48 c) 33.75 d) None of the above<br>Answer:<br>(b) Variance $= 148.6$<br>S.D. $= -\frac{\sqrt{Variance}}{Variance} = 148.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | a) 10 b) 9<br>Answer:                                                             |                                             | c) 8                                                 | d) None                                          |            |
| 1, 4, 4, 5, 6, 6, 8, 10<br>Largest value (L) = 10<br>Smallest value (S) = 1<br>Range (R) = L-S<br>= 10-1<br>= 9<br>46. If a variance of a random variable 'x' is 23, then what is variance of 2x + 10? Dec - 2015<br>a) 56 b) 33 c) 46 d) 92<br>Answer:<br>(d) Given Variance of x = 23<br>V(x) = 23<br>S.D. of x = $\sqrt{23}$<br>Given y= 2x + 10<br>2x - y + 10 = 0<br>$b = -\frac{coefficient of x}{coefficient of y} = \frac{-2}{-1} = 2$<br>S.D. of Y =  b  S.D. of x<br>= $ 2  \sqrt{23}$<br>$= 2\sqrt{23}$<br>Variance of y = (S.D. of y) <sup>2</sup> = $(2\sqrt{23})^2$<br>$= 2^2 \times 23$<br>$= 4 \times 23$<br>= 92<br>47. If variance = 148.6 and $\bar{x} = 40$ , the coefficient of variation is :<br>a) 37.15 b) 30.48 c) 33.75 d) None of the above<br>Answer:<br>(b) Variance = $148.6$<br>S.D. $x = \frac{148.6}{\sqrt{23}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | (b) Given data in Ascend                                                          | ling Order                                  |                                                      |                                                  |            |
| Largest value (L) = 10<br>Smallest value (S) = 1<br>Range (R) = L-S<br>= 10-1<br>= 9<br>46. If a variance of a random variable 'x' is 23, then what is variance of 2x + 10? Dec - 2015<br>a) 56 b) 33 c) 46 d) 92<br>Answer:<br>(d) Given Variance of x = 23<br>V(x) = 23<br>S.D. of x = $\sqrt{23}$<br>Given y= 2x + 10<br>2x - y + 10 = 0<br>$b = -\frac{coef ficient of x}{coef ficient of y} = \frac{-2}{-1} = 2$<br>S.D. of Y =  b  S.D. of x<br>=  2 . $\sqrt{23}$<br>$= 2\sqrt{23}$<br>Variance of y = (S.D. of y) <sup>2</sup> = $(2\sqrt{23})^2$<br>$= 4 \times 23$<br>= 92<br>47. If variance = 148.6 and $\bar{x} = 40$ , the coefficient of variation is :<br>a) 37.15 b) 30.48 c) 33.75 d) None of the above<br>Answer:<br>(b) Variance = 148.6<br>S.D. $x = \sqrt{Variance}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | 1, 4, 4, 5, 6, 6, 8, 10                                                           |                                             |                                                      |                                                  |            |
| Similarly value (S) = 1<br>Range (R) = L-S<br>= 10-1<br>= 9<br>46. If a variance of a random variable 'x' is 23, then what is variance of 2x + 10? Dec - 2015<br>a) 56 b) 33 c) 46 d) 92<br>Answer:<br>(d) Given Variance of x = 23<br>V(x) = 23<br>S.D. of x = $\sqrt{23}$<br>Given y= 2x + 10<br>2x - y + 10 = 0<br>$b = -\frac{coefficient of x}{coefficient of y} = \frac{-2}{-1} = 2$<br>S.D. of Y =  b  S.D. of x<br>= $ 2 .\sqrt{23}$<br>= $2\sqrt{23}$<br>Variance of y = (S.D. of y) <sup>2</sup> = $(2\sqrt{23})^2$<br>= $2^2 \times 23$<br>= $4 \times 23$<br>= 92<br>47. If variance = 148.6 and $\bar{x} = 40$ , the coefficient of variation is : Dec - 2015<br>a) 37.15 b) 30.48 c) 33.75 d) None of the above<br>Answer:<br>(b) Variance = 148.6<br>S.D. = $-\frac{\sqrt{Variance}}{\sqrt{Variance}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | Largest value (L)                                                                 | = 10                                        |                                                      |                                                  |            |
| 46. If a variance of a random variable 'x' is 23, then what is variance of $2x + 10$ ? Dec - 2015<br>a) 56 b) 33 c) 46 d) 92<br>Answer:<br>(d) Given Variance of $x = 23$<br>V(x) = 23<br>S.D. of $x = \sqrt{23}$<br>Given $y = 2x + 10$<br>2x - y + 10 = 0<br>$b = -\frac{coefficient of x}{coefficient of y} = \frac{-2}{-1} = 2$<br>S.D. of $Y =  b $ S.D. of $x$<br>$=  2 .\sqrt{23}$<br>$= 2\sqrt{23}$<br>Variance of $y = (S.D. \text{ of } y)^2 = (2\sqrt{23})^2$<br>$= 2^2 \times 23$<br>$= 4 \times 23$<br>= 92<br>47. If variance = 148.6 and $\bar{x} = 40$ , the coefficient of variation is :<br>a) 37.15 b) 30.48 c) 33.75 d) None of the above<br>Answer:<br>(b) Variance $= 148.6$<br>$S.D$ $= \sqrt{V(x)i ance}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | Bange (R)                                                                         | = 1<br>- 1 - S                              |                                                      |                                                  |            |
| = 9 46. If a variance of a random variable 'x' is 23, then what is variance of $2x + 10$ ? Dec - 2015<br>a) 56 b) 33 c) 46 d) 92<br>Answer:<br>(d) Given Variance of $x = 23$<br>V(x) = 23<br>S.D. of $x = \sqrt{23}$<br>Given $y = 2x + 10$<br>2x - y + 10 = 0<br>$b = -\frac{coefficient of x}{coefficient of y} = \frac{-2}{-1} = 2$<br>S.D. of $Y =  b $ S.D. of $x$<br>$=  2  \sqrt{23}$<br>$= 2\sqrt{23}$<br>Variance of $y = (S.D. \text{ of } y)^2 = (2\sqrt{23})^2$<br>$= 2^2 \times 23$<br>$= 4 \times 23$<br>= 92<br>47. If variance = 148.6 and $\bar{x} = 40$ , the coefficient of variation is :<br>a) 37.15 b) 30.48 c) 33.75 d) None of the above<br>Answer:<br>(b) Variance $= 148.6$<br>S.D. $= -\frac{\sqrt{Varianca}}{Varianca}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | Kunge (K)                                                                         | = 10 - 1                                    |                                                      |                                                  |            |
| 46. If a variance of a random variable 'x' is 23, then what is variance of $2x + 10$ ? Dec - 2015<br>a) 56 b) 33 c) 46 d) 92<br>Answer:<br>(d) Given Variance of $x = 23$<br>V(x) = 23<br>S.D. of $x = \sqrt{23}$<br>Given $y = 2x + 10$<br>2x - y + 10 = 0<br>$b = -\frac{coefficient of x}{coefficient of y} = \frac{-2}{-1} = 2$<br>S.D. of $Y =  b $ S.D. of $x$<br>$=  2 .\sqrt{23}$<br>$= 2\sqrt{23}$<br>Variance of $y = (S.D. of y)^2 = (2\sqrt{23})^2$<br>$= 2^2 \times 23$<br>$= 4 \times 23$<br>= 92<br>47. If variance = 148.6 and $\bar{x} = 40$ , the coefficient of variation is :<br>a) 37.15 b) 30.48 c) 33.75 d) None of the above<br>Answer:<br>(b) Variance $= 148.6$<br>S.D. $y = \frac{-2\sqrt{Variance}}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                   | = 9                                         |                                                      |                                                  |            |
| a) 56 b) 33 c) 46 d) 92<br>Answer:<br>(d) Given Variance of $x = 23$<br>V(x) = 23<br>S.D. of $x = \sqrt{23}$<br>Given $y = 2x + 10$<br>2x - y + 10 = 0<br>$b = -\frac{coefficient of x}{coefficient of y} = \frac{-2}{-1} = 2$<br>S.D. of $Y =  b $ S.D. of $x$<br>$=  2 .\sqrt{23}$<br>$= 2\sqrt{23}$<br>Variance of $y = (S.D. of y)^2 = (2\sqrt{23})^2$<br>$= 2^2 \times 23$<br>$= 4 \times 23$<br>= 92<br>47. If variance = 148.6 and $\bar{x} = 40$ , the coefficient of variation is :<br>a) 37.15 b) 30.48 c) 33.75 d) None of the above<br>Answer:<br>(b) Variance $= 148.6$<br>S.D. $= \sqrt{Variance}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>46.</b> | If a variance of a random vari                                                    | able 'x' is 23, th                          | nen what is va                                       | ariance of $2x + 10$ ?                           | Dec - 2015 |
| Answer:<br>(d) Given Variance of $x = 23$<br>V(x) = 23<br>S.D. of $x = \sqrt{23}$<br>Given $y = 2x + 10$<br>2x - y + 10 = 0<br>$b = -\frac{coefficient of x}{coefficient of y} = \frac{-2}{-1} = 2$<br>S.D. of $Y =  b $ S.D. of $x$<br>$=  2 .\sqrt{23}$<br>$= 2\sqrt{23}$<br>Variance of $y = (S.D. of y)^2 = (2\sqrt{23})^2$<br>$= 2^2 \times 23$<br>$= 4 \times 23$<br>= 92<br>47. If variance = 148.6 and $\bar{x} = 40$ , the coefficient of variation is :<br>a) 37.15 b) 30.48 c) 33.75 d) None of the above<br>Answer:<br>(b) Variance $= 148.6$<br>$S.D. = -\frac{\sqrt{Varianca}}{\sqrt{Varianca}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | a) 56 b) 33                                                                       |                                             | c) 46                                                | d) 92                                            |            |
| (d) Given variance of $x^2 = 23$<br>$V(x) = 23$ S.D. of $x^2 = \sqrt{23}$ Given $y = 2x + 10$ $2x - y + 10 = 0$ $b = -\frac{coefficient of x}{coefficient of y} = \frac{-2}{-1} = 2$ S.D. of $Y =  b $ S.D. of $x$ $=  2  \sqrt{23}$ $= 2\sqrt{23}$ Variance of $y = (S.D. \text{ of } y)^2 = (2\sqrt{23})^2$ $= 2^2 \times 23$ $= 4 \times 23$ $= 92$ 47. If variance = 148.6 and $\bar{x} = 40$ , the coefficient of variation is :<br>a) 37.15 b) 30.48 c) 33.75 d) None of the above<br>Answer:<br>(b) Variance = 148.6 $= 148.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | Answer:                                                                           | - 22                                        |                                                      |                                                  |            |
| S.D. of x = $\sqrt{23}$<br>Given y= 2x + 10<br>2x - y + 10 = 0<br>$b = -\frac{coefficient of x}{coefficient of y} = \frac{-2}{-1} = 2$<br>S.D. of Y =  b  S.D. of x<br>$=  2 .\sqrt{23}$<br>$= 2\sqrt{23}$<br>Variance of y = (S.D. of y) <sup>2</sup> = $(2\sqrt{23})^2$<br>$= 2^2 \times 23$<br>$= 4 \times 23$<br>= 92<br>47. If variance = 148.6 and $\bar{x} = 40$ , the coefficient of variation is :<br>a) 37.15 b) 30.48 c) 33.75 d) None of the above<br>Answer:<br>(b) Variance = 148.6<br>S.D. $= 148.6$<br>S.D. $= 2\sqrt{Varianca}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | (d) Given variance of $x$<br>V(x)                                                 | = 23<br>- 23                                |                                                      |                                                  |            |
| Given $y = 2x + 10$<br>2x - y + 10 = 0<br>$b = -\frac{coefficient of x}{coefficient of y} = \frac{-2}{-1} = 2$<br>S.D. of Y =  b  S.D. of x<br>$=  2  \cdot \sqrt{23}$<br>$= 2\sqrt{23}$<br>Variance of y = (S.D. of y) <sup>2</sup> = $(2\sqrt{23})^2$<br>$= 2^2 \times 23$<br>$= 4 \times 23$<br>= 92<br>47. If variance = 148.6 and $\bar{x} = 40$ , the coefficient of variation is :<br>a) 37.15 b) 30.48 c) 33.75 d) None of the above<br>Answer:<br>(b) Variance $= 148.6$<br>S.D. = -2015<br>(c) Variance $= 148.6$<br>S.D. = -2015<br>(c) Variance $= 148.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | SD of x                                                                           | = 23<br>= $\sqrt{23}$                       |                                                      |                                                  |            |
| 2x - y + 10 = 0<br>$b = -\frac{coefficient of x}{coefficient of y} = \frac{-2}{-1} = 2$<br>S.D. of Y =  b  S.D. of x<br>$=  2  \cdot \sqrt{23}$<br>$= 2\sqrt{23}$<br>Variance of y = (S.D. of y) <sup>2</sup> = $(2\sqrt{23})^2$<br>$= 2^2 \times 23$<br>$= 4 \times 23$<br>= 92<br>47. If variance = 148.6 and $\bar{x} = 40$ , the coefficient of variation is :<br>a) 37.15 b) 30.48 c) 33.75 d) None of the above<br>Answer:<br>(b) Variance = 148.6<br>S.D. of y = 148.6<br>S.D. of y = 148.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | $\begin{array}{c} \text{Given } v = 2x + 10 \end{array}$                          | - 125                                       |                                                      |                                                  |            |
| $b = -\frac{coefficient of x}{coefficient of y} = \frac{-2}{-1} = 2$<br>S.D. of Y =  b  S.D. of x<br>$=  2  \cdot \sqrt{23}$ $= 2\sqrt{23}$ Variance of y = (S.D. of y) <sup>2</sup> = $(2\sqrt{23})^{2}$ $= 2^{2} \times 23$ $= 4 \times 23$ $= 92$ 47. If variance = 148.6 and $\bar{x} = 40$ , the coefficient of variation is :<br>a) 37.15 b) 30.48 c) 33.75 d) None of the above<br>Answer:<br>(b) Variance = 148.6<br>S.D. = - $\sqrt{Variance}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | 2x - y + 10 = 0                                                                   |                                             |                                                      |                                                  |            |
| 47. If variance = 148.6 and $\bar{x} = 40$ , the coefficient of variation is :<br>a) 37.15 b) 30.48 c) 33.75 d) None of the above<br>Answer:<br>(b) Variance = 148.6 and $\bar{x} = 40$ , the coefficient of variation is :<br>b) $2 = 2^2 \times 23$<br>$= 2^2 \times 23$<br>= 92<br>47. If variance = 148.6 and $\bar{x} = 40$ , the coefficient of variation is :<br>= 148.6<br>= 148.6<br>= 148.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | $\mathbf{b} = -\frac{coefficient  of  x}{coefficient  of  x} =$                   | $=\frac{-2}{-2}=2$                          |                                                      |                                                  |            |
| 47. If variance = 148.6 and $\bar{x} = 40$ , the coefficient of variation is :<br>(b) Variance $= 148.6$ and $\bar{x} = 40$ , the coefficient of variation is :<br>(b) Variance $= 148.6$ $= 148.6$ $= 148.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | coefficient of y<br>S D of V –  b  S D of                                         | -1<br>f x                                   |                                                      |                                                  |            |
| $=  2 .\sqrt{23}$<br>= $2\sqrt{23}$<br>Variance of y = (S.D. of y) <sup>2</sup> = $(2\sqrt{23})^2$<br>= $2^2 \times 23$<br>= $4 \times 23$<br>= $92$<br>47. If variance = 148.6 and $\bar{x} = 40$ , the coefficient of variation is :<br>a) 37.15 b) 30.48 c) 33.75 d) None of the above<br>Answer:<br>(b) Variance = $148.6$<br>S D = $\sqrt{Varianca}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 5.D. 01 1 -  0  5.D. 0.                                                           |                                             |                                                      |                                                  |            |
| Variance of y = $(S.D. \text{ of } y)^2 = (2\sqrt{23})^2$<br>= $2^2 \times 23$<br>= $4 \times 23$<br>= $92$<br>47. If variance = 148.6 and $\bar{x} = 40$ , the coefficient of variation is : Dec - 2015<br>a) 37.15 b) 30.48 c) 33.75 d) None of the above<br>Answer:<br>(b) Variance = $148.6$<br>S D = $\sqrt{Varianca}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | $=  2 .\sqrt{23}$<br>$= 2\sqrt{23}$                                               |                                             |                                                      |                                                  |            |
| 47. If variance = 148.6 and $\bar{x} = 40$ , the coefficient of variation is :<br>a) 37.15 b) 30.48 c) 33.75 d) None of the above<br>Answer:<br>(b) Variance = 148.6<br>S D = $\sqrt{Variance}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | Variance of $v = (S.D. c)$                                                        | $(2\sqrt{23})^2 = (2\sqrt{23})^2$           | 2                                                    |                                                  |            |
| $= 4 \times 23$<br>= 92<br>47. If variance = 148.6 and $\bar{x} = 40$ , the coefficient of variation is :<br>a) 37.15 b) 30.48 c) 33.75 d) None of the above<br>Answer:<br>(b) Variance = 148.6<br>S D = $\sqrt{Varianca}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                                                                                   | $= 2^2 \times 23$                           |                                                      |                                                  |            |
| $= 92$ 47. If variance = 148.6 and $\bar{x} = 40$ , the coefficient of variation is :<br>a) 37.15 b) 30.48 c) 33.75 d) None of the above<br>Answer:<br>(b) Variance = 148.6<br>S D = $\sqrt{Varianca}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                                                                                   | = 4 × 23                                    |                                                      |                                                  |            |
| 47. If variance = 148.6 and $\bar{x} = 40$ , the coefficient of variation is :<br>a) 37.15 b) 30.48 c) 33.75 d) None of the above<br>Answer:<br>(b) Variance = 148.6<br>S D = $\sqrt{Varianca}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                                                                                   | = 92                                        |                                                      |                                                  |            |
| a) $37.15$ b) $30.48$ c) $33.75$ d) None of the above<br><b>Answer:</b><br>(b) Variance = $148.6$<br><b>S</b> D = $\sqrt{Varianca}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 47.        | If variance = 148.6 and $\bar{x} = 4$                                             | 0, the coefficien                           | nt of variation                                      | n is :                                           | Dec - 2015 |
| Answer:<br>(b) Variance = $148.6$<br>S D = $\sqrt{Varianca}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | a) 37.15 b) 30.48                                                                 | 8                                           | c) 33.75                                             | d) None of th                                    | ne above   |
| $S D = \sqrt{Variance}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | (b) Variance                                                                      | = 148.6                                     |                                                      |                                                  |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | S D                                                                               | $= \sqrt{Variance}$                         | ρ                                                    |                                                  |            |
| $=\sqrt{148.6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | 5.21                                                                              | $=\sqrt{148.6}$                             |                                                      |                                                  |            |
| = 12.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                                                                                   | = 12.19                                     |                                                      |                                                  |            |
| And A.M. $(\bar{x}) = 40$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | And A.M. $(\bar{x})$                                                              | = 40                                        |                                                      |                                                  |            |
| Coefficient of Variation C.V. = $\frac{S.D.}{4M} \times 100$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | Coefficient of Variation                                                          | on C.V. = $\frac{S.D.}{AM}$ ×               | 100                                                  |                                                  |            |
| $=\frac{\frac{12.19}{12.19}}{\times 100}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |                                                                                   | $=\frac{12.19}{12.19}$                      | < 100                                                |                                                  |            |
| $= \frac{40}{30.48}$ (Appr.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                                                                                   | = 30.48                                     | (Appr.)                                              |                                                  |            |

| Dispersio | on la                                     | 34.9                                         | GOPA                                             | L BHOOT        |
|-----------|-------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------|----------------|
| 48.       | The SD of first n natural number is                                           | :                                            | Jun                                              | e-2016         |
|           | a) $\sqrt{\frac{n^2 - 1}{2}}$ b) $\sqrt{\frac{n(n+1)}{2}}$                    | c) $\frac{2(n-1)}{2}$                        | d) None of these.                                |                |
|           | $\sqrt{12}$ $\sqrt{12}$ $\sqrt{12}$                                           | 6                                            | .,                                               |                |
|           | (a) The S.D. of First n natural Nu                                            | mber is                                      |                                                  |                |
|           | $S D = \sqrt{\frac{n^2 - 1}{n^2}}$                                            |                                              |                                                  |                |
| 40        | $3.D. = \sqrt{\frac{12}{12}}$                                                 | f (h                                         | 1                                                | (1             |
| 49.       | What will be variance of them?                                                | of the marks of 10 stud                      | ients is 20 and 80 respect.                      | e-2016         |
|           | a) 256 b) 16                                                                  | c) 25                                        | d) None of these.                                |                |
|           | Answer:                                                                       | 10                                           |                                                  |                |
|           | (a) Given No. of observation N =<br>Mean $(\bar{x}) = 20$                     | 10                                           |                                                  |                |
|           | (x) = 20<br>c.v. = 80                                                         |                                              |                                                  |                |
|           |                                                                               |                                              |                                                  |                |
|           | c.v. $=\frac{S.D.}{A.M.}\times 100$                                           |                                              |                                                  |                |
|           | $80 = \frac{S.D.}{20} \times 100$                                             |                                              |                                                  |                |
|           | S.D. = $\frac{20}{80 \times 20}$                                              |                                              |                                                  |                |
|           | S.D. = 16                                                                     |                                              |                                                  |                |
|           | Variance = $(S.D.)^2$                                                         |                                              |                                                  |                |
|           | $= (16)^2$                                                                    |                                              |                                                  |                |
| 50        | = 256<br>If same amount is added to or subtrac                                | ted from all the values                      | of an individual series th                       | en the         |
| 50.       | standard deviation and variance both s                                        | hall be                                      | Jun                                              | e-2016         |
|           | a) Changed b) Unchanged                                                       | c) Same                                      | d) None of these.                                |                |
|           | Answer:<br>(b) If some amount is added to or                                  | subtracted from all the                      | values of an individual a                        | orios          |
|           | then                                                                          | subtracted from an the                       | values of all marvidual so                       |                |
|           | S.D. and variance both shall b                                                | e unchanged.                                 |                                                  |                |
| 51.       | The second and third moments of a s                                           | ample of seven observ                        | ation (-6,-4,-2,0,2,4,6) ar                      | e Dec-         |
|           | (a) $(12.0)$ (b) $(0.12)$                                                     | (c) (0.16)                                   | (d) (16.0)                                       |                |
| 52.       | For a moderately skewed distribution                                          | , the relationship betwe                     | een mean, median and me                          | ode is:        |
|           | Dec-2016                                                                      |                                              |                                                  |                |
|           | a) Mean - Mode = $2$ (Mean - Median)<br>c) Mean - Median = $2$ (Mean - Mode)  | b) Mean - Mea<br>d) Mean - Mod               | lian = 3 (Mean - Mode)<br>le = 3 (Mean - Median) |                |
| 53.       | If arithmetic mean and coefficient of                                         | f variation of x are 10                      | ) and 40. respectively th                        | en the         |
|           | variance of $-15 + \frac{3x}{2}$ will be:                                     |                                              | Dec                                              | - 2016         |
|           | a) 64 b) 81                                                                   | c) 49                                        | d) 36                                            |                |
| 54.       | If Arithmetic Mean = $\frac{8+4}{2}$ , then Varian                            | ce is :                                      | De                                               | <b>c-2017</b>  |
|           | a) 2 b) 6                                                                     | c) 1                                         | d) 4                                             |                |
| 55.       | Coefficient of mean deviation about m                                         | ean for the first 9 nature $\frac{400}{100}$ | ral numbers is : De                              | c-2017         |
|           | a) $\frac{1}{9}$ b) 80                                                        | $c) \frac{1}{9}$                             | d) 50                                            |                |
| 56.       | Mean = 5, S.D = 2.6, Median = 5, Q.D<br>a) $35$ b) $39$                       | = 1.5 then Coefficient                       | of Q.D is : <b>De</b>                            | <b>c-201</b> 7 |
| 57.       | The difference between maximum and                                            | minimum value of the                         | data is known as : <b>De</b>                     | <b>c-2017</b>  |
|           | a) Range b) Size                                                              | c) Width                                     | d) Class                                         |                |
| 58.       | $\frac{(\mathbf{q}_3-\mathbf{q}_1)}{(\mathbf{q}_3+\mathbf{q}_1)}$ is known as |                                              | Maj                                              | y-2018         |
|           | (a) Coefficient of Range                                                      | (b) Coefficient                              | of Q.D.                                          |                |
|           | (c) Coefficient of S.D.                                                       | (d) Coefficient                              | of M.D.                                          |                |
|           | Answer:                                                                       |                                              |                                                  |                |

(b) Coefficient of Q.D. = 
$$\frac{(0-6)}{(0+4)}$$
  
59. If the S.D. of the 1° n natural No.s is  $\sqrt{30}$ , Then the value of n is May-2018  
(a) 19 (b) 20 (c) 21 (d) None  
Answer:  
(a) S.D. of First 'n' natural Numbers  

$$= \sqrt{\frac{n^2-1}{12}}$$
 $\sqrt{30} = \sqrt{\frac{n^2-1}{12}}$ 
On squaring both side  
 $30 = \frac{n^2-1}{12}$   
 $300 = n^2 - 1$   
 $n^2 = 360 + 1$   
 $n = -19$   
60. The Algebraic sum of the deviation of a set of values from their arithmetic mean is Nov-  
2018  
(a) > 0 (b) = 0 (c) < 0 (d) None of the above  
Answer:  
(b) The Arithmetic sum of the deviation of a set of value from their A.M is always Zero.  
61. If the range of a set of values is 65 and maximum value in the set is 83, then the minimum  
value in the set is  
(a) 74 (b) 9 (c) 18 (d) None of the above  
Answer:  
(c) Given : Maximum Value (L) = 83  
Range (R) = -1 - S  
 $65 = 83 - 65$   
S = 18  
62. If the variance of 5, 7, 9 and 11 is 4, then the coefficient of variation is: Nov-2018  
(a) 15 (b) 25 (c) 17 (d) 19  
Answer:  
(b) Variance of 5, 7, 9 and 11 is 4, then the coefficient of variation is: Nov-2018  
(a) 15 (b) 25 (c) 17 (d) 19  
Answer:  
(b) Given data's are  
 $15, 20, 25, 20, 15$  is Nov-2018  
(a) 25 (b)  $5\sqrt{2}$  (c) Var) (d) 50  
Answer:  
(b) Given data's are  
 $15, 20, 25, 30, 35$   
 $Mean (x) = \frac{2\pi}{N} = \frac{15+20+32+34+35}{5} = \frac{125}{5} = 25$ 

|     | X                                     | x                                                                                                                                                                                            | $d=x-(\bar{x})$             | <i>d</i> <sup>2</sup> |              |
|-----|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------|--------------|
|     | 15                                    | 25                                                                                                                                                                                           | -10                         | 100                   |              |
|     | 20                                    | 25                                                                                                                                                                                           | -5                          | 25                    |              |
|     | 25                                    | 25                                                                                                                                                                                           | 0                           | 0                     |              |
|     | 30                                    | 25                                                                                                                                                                                           | 5                           | 25                    |              |
|     | 35                                    | 25                                                                                                                                                                                           | 10                          | 100                   |              |
|     | N= 5                                  |                                                                                                                                                                                              |                             | $\sum d^2$            |              |
|     | $S.D = \sqrt{\frac{\sum d^2}{N}} = 2$ | $\sqrt{\frac{250}{5}} = \sqrt{5}$                                                                                                                                                            |                             |                       |              |
| 64. | If the standard devia                 | tion for the marks ob                                                                                                                                                                        | tained by a student in      | monthly test is       | 36, then the |
|     | (a) 6                                 | (b) 36                                                                                                                                                                                       | (c) 1296                    | (d) None of           | the above    |
|     | Answer:                               | (0) 50                                                                                                                                                                                       | (c) 1290                    | (u) None of           | the above    |
|     | (c) If S.D. =                         | = 36                                                                                                                                                                                         |                             |                       |              |
|     | Variance () =                         | $=(36)^2$                                                                                                                                                                                    |                             |                       |              |
| 6   | =                                     | = 1,296                                                                                                                                                                                      | $200(1)$ $\overline{V}$     |                       | I 2010       |
| 05. | If $\sigma^2 = 100$ and coe           | (b) 70                                                                                                                                                                                       | 20% then X                  | (d) 50                | June-2019    |
|     | Answer:                               | (0) $70$                                                                                                                                                                                     | $(\mathbf{c})$ of           | (u) 50                |              |
|     | ( <b>d</b> ) If $\sigma^2 = 100$      | and c                                                                                                                                                                                        | c.v.= 20%                   |                       |              |
|     | $\sigma = \sqrt{10}$                  | $\overline{00} = 10$                                                                                                                                                                         |                             |                       |              |
|     | $c.v. = \frac{S.D}{AM} \times$        | 100                                                                                                                                                                                          |                             |                       |              |
|     | $20 = \frac{10}{10} \times 10^{-10}$  | 00                                                                                                                                                                                           |                             |                       |              |
|     | 20X = 1000                            | )                                                                                                                                                                                            |                             |                       |              |
|     | $X = \frac{1000}{1000}$               | _ 50                                                                                                                                                                                         |                             |                       |              |
| 66. | 20<br>Standard deviation is           | stime                                                                                                                                                                                        | es of $\sqrt{MD \times QD}$ |                       | June-2019    |
|     | (a) 2/3                               | (b) 4/5                                                                                                                                                                                      | (c) $\frac{15}{2}$          | (d) $\frac{8}{12}$    |              |
|     | A newor:                              |                                                                                                                                                                                              | <ul><li>√ 8</li></ul>       | √ 15                  |              |
|     | (c) We know th                        | nat                                                                                                                                                                                          |                             |                       |              |
|     | 4 S.E                                 | $D_{\rm c} = 5 \text{ M.D.} = 6 \text{ Q.D.}$                                                                                                                                                |                             |                       |              |
|     | 4 S.E                                 | $D_{\rm c} = 5  {\rm M.D.}$                                                                                                                                                                  |                             |                       |              |
|     | $\frac{S.D}{M.D}$ =                   | $=\frac{5}{4}$                                                                                                                                                                               |                             |                       |              |
|     | 4 S.D                                 | $D_{r} = 6 \text{ Q.D.}$                                                                                                                                                                     |                             |                       |              |
|     | S.D.                                  | $=\frac{6}{4}$ Q.D.                                                                                                                                                                          |                             |                       |              |
|     | <u>S.D</u>                            | $=\frac{6}{4}$                                                                                                                                                                               |                             |                       |              |
|     | Q.D<br>Mult                           | 4 tiply by (1) and (2)                                                                                                                                                                       |                             |                       |              |
|     | <u>S.D</u>                            | $\times \frac{S.D}{S} = \frac{5}{5} \times \frac{6}{5}$                                                                                                                                      |                             |                       |              |
|     | M.D                                   | $\begin{array}{c} & Q.D \\ Q.D \\ \end{array} \begin{array}{c} 4 \\ 15 \\ \end{array} \begin{array}{c} 4 \\ \end{array} \begin{array}{c} 4 \\ \end{array} \begin{array}{c} 4 \\ \end{array}$ |                             |                       |              |
|     | (S.)                                  | $D)^{2} = \frac{1}{8} \underline{M.D. \times Q.D}$                                                                                                                                           | _                           |                       |              |
|     | (S.                                   | (D) = $\sqrt{\frac{15}{8}}M.\overline{D \times Q.L}$                                                                                                                                         | )                           |                       |              |
|     | S                                     | $.D = \sqrt{\frac{15}{9}} \sqrt{M.D \times Q}.$                                                                                                                                              | . <u>D</u>                  |                       |              |
| 67. | The Q.D of 6 numbe                    | rs 15, 8, 36, 40, 38, 41                                                                                                                                                                     | l is equal to               |                       | June-2019    |
|     | (a) 12.5                              | (b) 25                                                                                                                                                                                       | (c) 13.5                    | (d) 37                |              |
|     | Answer:                               |                                                                                                                                                                                              |                             |                       |              |

(c) Write the terms in Ascending order,
**68.** 

**69.** If

8, 15, 36, 38, 40, 41  
Here, N=4  

$$Q_1 = \left(\frac{N+1}{4}\right)^{th}$$
 term  
 $= \left(\frac{6+1}{4}\right)^{th}$  term  
 $= 1.75^{th}$  term  
 $= 1.75^{th}$  term  
 $= 1.75^{th}$  term  
 $= 1.75^{th}$  term  
 $= 8 + 0.75 \times 7$   
 $= 8 + 5.25$   
 $= 13.25$   
 $Q_2 = \frac{3(N+1)^{th}}{4}$  term  
 $= \frac{3(6+1)^{th}}{4}$  term  
 $= \frac{3(6+1)^{th}}{4}$  term  
 $= 5.25^{th}$  term  
 $= 5.25^{th}$  term  
 $= 5.25^{th}$  term  
 $= 5.25^{th}$  term  
 $= 5^{th}$  term  $4.025$  ( $6^{th}$  term  $-5^{th}$  term)<sup>++</sup>  
 $= 40 + 0.25 \times 1$   
 $= 40 + 0.25 \times 1$   
 $= 40 + 0.25$   
 $= 40.25$   
 $QD = \frac{0^{2}-Q_{1}}{2}$   
 $= \frac{4025-13.25}{2}$   
 $= \frac{27}{2} = 13.5$   
S.D. of first five consecutive natural numbers is ?  
 $June-2019$   
(a)  $\sqrt{10}$  (b)  $\sqrt{8}$  (c)  $\sqrt{3}$  (d)  $\sqrt{2}$   
Answer:  
(d) S.D. of 1<sup>st</sup> 'n' Natural No.  $= \sqrt{\frac{n^{2}-1}{12}}$   
 $n = 5$   
 $S.D = \sqrt{\frac{5^{2}-1}{12}} = \sqrt{\frac{24}{12}}$   
 $= \sqrt{2}$   
If the profits of a company remain some for the last ten months then the S.D. of profits of the company would be :  
 $June-2019$   
(a) Positive (b) Negative (c) Zero (d) (a) or (c)  
Answer:  
(c) If the profits of a company remain same for ten months.

then  $\boxed{S.D = 0}$ (Since shifting of origin S.D is not changed) 70. Coefficient of quartile deviation is 1/4 then  $Q_3/Q_1$  is (a) 5/3 (b) 4/3 (c) 3/4 (d) 3/5 Answer: (a) Coeff. of Q.D =  $\frac{1}{4}$   $\frac{Q_{3-Q_1}}{Q_{3+Q_1}} = \frac{1}{4}$   $4 Q_3 - 4 Q_1 = Q_3 + Q_1$   $4 Q_3 - Q_3 = Q_1 + 4 Q_1$   $3 Q_3 = 5 Q_1$  $\frac{Q_3}{Q_1} = \frac{5}{3}$ 

| 34.13                                                   |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| a + b, if we add 2 to e                                 | ach observation                                                                                                                                                                                                                                                                                                                                                                                           | of the series<br>June-2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| (c) 4 +a - b                                            | (d) $a + b + 4$                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| change but S.D. is not ch                               | nanged.                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| eries.                                                  |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| he new sum of mean and                                  | d S.D.                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| s:<br>(c) 6:5:4                                         | (d) 5 : 6 : 7                                                                                                                                                                                                                                                                                                                                                                                             | Nov-2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| from :<br>(c) Mode                                      | (d) None                                                                                                                                                                                                                                                                                                                                                                                                  | Nov-2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| imum when taken from                                    | median                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|                                                         | median                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| (b) OD will in and                                      | age by 5                                                                                                                                                                                                                                                                                                                                                                                                  | Nov-2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| (d) There will be                                       | no change                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| (c) $\frac{Mean}{CP} \times 100$                        | (d) $\frac{Mean}{cp}$                                                                                                                                                                                                                                                                                                                                                                                     | Nov-2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| SD                                                      | S SD                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| ics the coefficient of va                               | riation also know                                                                                                                                                                                                                                                                                                                                                                                         | /n as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| asure of dispersion of free<br>ercentage and defined as | equency distributes the ratio of SD                                                                                                                                                                                                                                                                                                                                                                       | tion.<br>and mean.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| $\frac{SD}{Mean} \times 100$                            |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                           | Nov-2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| (c) 60/3                                                | (d) 3.20                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| Q <sup>2</sup>                                          |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| pefficient of variation.                                |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                           | Nov-2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| (c) 32                                                  | (d) 0.32                                                                                                                                                                                                                                                                                                                                                                                                  | Nov-2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| (c) 32                                                  | (d) 0.32                                                                                                                                                                                                                                                                                                                                                                                                  | Nov-2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|                                                         | 34.13<br>a + b, if we add 2 to e<br>(c) 4 +a - b<br>hange but S.D. is not ch<br>eries.<br>he new sum of mean and<br>:<br>(c) 6 : 5 : 4<br>from :<br>(c) Mode<br>imum when taken from<br>(b) QD will increated<br>(c) $\frac{Mean}{SD} \times 100$<br>ics the coefficient of vata<br>asure of dispersion of free<br>ercentage and defined as<br>$\frac{SD}{Mean} \times 100$<br>(c) 60/3<br>9 <sup>2</sup> | 34.13<br>a + b, if we add 2 to each observation<br>(c) 4 +a - b (d) a + b + 4<br>thange but S.D. is not changed.<br>eries.<br>he new sum of mean and S.D.<br>(c) 6 : 5 : 4 (d) 5 : 6 : 7<br>from :<br>(c) Mode (d) None<br>imum when taken from median<br>(b) QD will increase by 5<br>(d) There will be no change<br>(c) $\frac{Mean}{SD} \times 100$ (d) $\frac{Mean}{SD}$<br>ics the coefficient of variation also know<br>asure of dispersion of frequency distributer<br>recentage and defined as the ratio of SD<br>$\frac{SD}{Mean} \times 100$<br>(c) $\frac{60/3}{3}$ (d) 3.20<br>9 <sup>2</sup> |  |  |  |  |

|     | CV                          | $=\frac{\sqrt{Variance}}{100} \times 100$   |                  |                   |                |                     |
|-----|-----------------------------|---------------------------------------------|------------------|-------------------|----------------|---------------------|
|     | <b></b>                     | $\frac{Mean}{\sqrt{80}}$                    |                  |                   |                |                     |
|     | CV                          | $=\frac{1}{200} \times 100$                 |                  |                   |                |                     |
|     | CV                          | $=\frac{\sqrt{80}}{2}$                      |                  |                   |                |                     |
|     | CV                          | =4.47(approx)                               |                  |                   |                |                     |
| 78. | Which of the fo             | blowing is affected by                      | shifting of scal | e.                |                | Nov-2019            |
|     | (a) SD                      | (b) MD                                      | (c) OI           | )                 | (d) All of th  | lese                |
| 79. | Coefficient of v            | variation is 80. Mean is                    | 20. Find varia   | nce:              |                | Nov-2019            |
|     | (a) 640                     | (b) 256                                     | (c) 16           |                   | (d) 250        |                     |
| 80. | SD from number              | ers 1, 4, 5, 7, 8 is 2.45.                  | If 10 is added   | to each then SD   | will be:       | Nov-2019            |
|     | (a) 12.45                   | (b) 24.5                                    | (c) 12           |                   | (d) Will not   | change.             |
|     | Answer:                     |                                             |                  |                   |                | -                   |
|     | ( <b>d</b> ) We kr          | now a change in origin                      | of SD causes i   | no change in SE   | )              |                     |
|     | So, N                       | ew SD = Originals SD                        | when 10 will     | be added          |                |                     |
|     | So, S                       | D will not change                           |                  |                   |                |                     |
| 81. | Which of the fo             | ollowing measure of di                      | spersion is base | ed on absolute d  | eviations?     | Nov – 2020          |
|     | (a) Range                   | (b) S.D                                     | (c) Me           | ean Deviation     | (d) Quartile   | Deviation           |
| 82. | The best statisti           | cal measure used for c                      | omparing two     | series is         |                | Jan – 2021          |
|     | (a) Mean absolu             | ute deviation                               | (b) Ra           | nge               |                |                     |
|     | (c) Coefficient             | of variation                                | (d) Sta          | andard deviation  | 1              |                     |
| 83. | The relationship            | p between P-series and                      | Q series is give | ven by $2P - 3Q$  | -10. If the    | range of P –        |
|     | Series is 18. W             | hat would be the range                      | of Q?            |                   | (1) 10         | Jan – 2021          |
|     | (a) 10                      | (b) 15                                      | (c) 9            |                   | (d) 12         |                     |
|     | Answer:                     | alation h/w D comises a                     | nd O comisos is  | airran hru        |                |                     |
|     | $(\mathbf{u})$ The K        | 10 - 0                                      | na Q-serises is  | given by:         |                |                     |
|     | 21-30                       | 2 - 10 = 0<br>, -Cofficient o               | f P              |                   |                |                     |
|     |                             | $b = \frac{f}{Cofficient of}$               | $\overline{Q}$   |                   |                |                     |
|     |                             | $=\frac{-2}{-2}$                            |                  |                   |                |                     |
|     |                             | -3                                          |                  |                   |                |                     |
|     | _                           | $D = \frac{1}{3}$                           |                  |                   |                |                     |
|     | Ra                          | nge of $Q = [b]$ rang o                     | f P              |                   |                |                     |
|     |                             | $= \left \frac{2}{3}\right  \times 18$      |                  |                   |                |                     |
|     |                             | $-\frac{2}{-1} \times 18$                   |                  |                   |                |                     |
|     |                             | $-\frac{1}{3}$ × 10                         |                  |                   |                |                     |
| 01  | It is given that            | = 12                                        | d standard davi  | lation (a d) is 2 | ) If the obse  | mustions and        |
| 04. | increased by A              | then the new mean and $(\Lambda)$ is 10 all | d standard devi  | ation are:        | 2. If the obse | Ion 2021            |
|     | (a) $\mathbf{X} = 10$ s d   | -72 (b) X $-10$ s d                         | -32 (c) X -      | -14  sd - 32      | (d) $X - 14$   | d = 72              |
|     | (u) X = 10, 3.u.<br>Answer• | $-7.2$ (0) $\mathbf{X} = 10, $ s.d.         | $-3.2$ (c) $\pi$ | -1-7, 5.0 5.2     | (u) = 1-,      | 5.d. – 7.2          |
|     | (c) Mean                    | $(\overline{X}) = 10$                       |                  |                   |                |                     |
|     | S.D. (                      | $(\sigma) = 3.2$                            |                  |                   |                |                     |
|     | (By s                       | hifting the origin Mea                      | is changed)      |                   |                |                     |
|     | New                         | mean = 10 + 4 = 14                          | 8.4)             |                   |                |                     |
|     | (÷eac                       | h observation are decre                     | eased by 4)      |                   |                |                     |
|     | By th                       | e shifting origin S.D. i                    | s not changed    |                   |                |                     |
|     | New                         | S.D. = Original S.D. =                      | 3.2              |                   |                |                     |
| 85. | Which of the fo             | llowing is a relative m                     | easure of dispe  | ersion?           |                | <b>Jan – 2021</b>   |
|     | (a) Range                   |                                             | (b) Me           | ean deviation     |                |                     |
|     | (c) Standard de             | viation                                     | (d) Co           | efficient of qua  | rtile deviatio | ns                  |
| 86. | Find the coeffic            | cient of mean deviation                     | n about mean f   | or the data: 5, 7 | , 8, 10, 11, 1 | 13, 19 <b>Jan –</b> |
|     | 2021                        |                                             |                  |                   |                |                     |
|     | (a) 17.25                   | (b) 28.57                                   | (c) 32.          | .11               | (d) 18.56      |                     |
|     | Answer:                     |                                             |                  |                   |                |                     |

Dispersion

34.15

(c) Given data 5,7,8,10,11,13,19 Mean  $(\bar{X}) = \frac{\sum x}{N} = \frac{5+7+8+10+11+13+19}{7}$  $= \frac{73}{7} = 10.42$ 

For M.D.

| Х    | $\overline{X}$ | $[\mathbf{d}] = [\mathbf{x} - \bar{\mathbf{x}}]$ |
|------|----------------|--------------------------------------------------|
| 5    | 10.42          | 5.42                                             |
| 7    | 10.42          | 3.42                                             |
| 8    | 10.42          | 2.42                                             |
| 10   | 10.42          | 0.42                                             |
| 11   | 10.42          | 0.58                                             |
| 13   | 10.42          | 2.58                                             |
| 19   | 10.42          | 8.58                                             |
| N= 7 |                | $\sum[d] = 23.42$                                |

M.D. 
$$=\frac{\sum[d]}{N} = \frac{23.42}{7} = 3.3457$$
  
Coff. of M.D.  $=\frac{M.D.}{mean} \times 100$   
 $=\frac{3.3457}{10.42} \times 100$   
 $= 32.11$ 

87. The mean deviation of the numbers 3, 10, 6, 11, 14, 17, 9, 8, 12 about the mean is (correct to one decimal place): July – 2021

(a) 8.7
(b) 4.2
(c) 3.1
(d) 9.8

(d) 5.17 (e) 5.17 (e)

Answer:

(c) Given

| X     | Α | $\oint    =  (x - A) $ |
|-------|---|------------------------|
| 164   | 7 | +7                     |
| 164   | 7 | +7                     |
| 168   | 7 | +3                     |
| 168   | 7 | +3                     |
| 169   | 7 | +2                     |
| 169   | 7 | +2                     |
| 172   | 7 | 1                      |
| 172   | 7 | 1                      |
| 173   | 7 | 2                      |
| 173   | 7 | 2                      |
| 173   | 7 | 2                      |
| 173   | 7 | 2                      |
| 178   | 7 | 7                      |
| 178   | 7 | 7                      |
| N= 14 |   | $\sum  d  = 48$        |

Average deviation 
$$=\frac{\sum |d|}{N}$$

$$=\frac{48}{14}=3.43$$

**89.** The standard deviation of 1 to 9 natural number is: (a) 6.65 (b) 2.58 (c) 6.75 **July – 2021** (d) 5.62

**92.** 

34.16

**Answer:** (**b**) S.D. of First 'n' natural No =  $\sqrt{\frac{9^2-1}{12}}$  $=\sqrt{\frac{81-1}{12}}$  $=\sqrt{\frac{80}{12}}$ = 2.58The probable value of mean deviation when  $Q_3 = 40$  and  $Q_1 = 15$  is: 90. July - 2021 (a) 15 (b) 18.75 (c) 17.50 (d) 0**Answer:** (a) Given  $Q_3 = 40$  and  $Q_1 = 15$ Coefficient of Q.D. =  $\frac{Q_3 - Q_1}{2}$ =  $\frac{40 - 15}{2}$ =  $\frac{25}{2}$ We know that 4 S.D. = 5 M.D. = 6 Q.D. Now 5 M.D. = 6 Q.D. 5 M.D. =  $6 \times \frac{25}{2}$ M.D. =  $\frac{6 \times 25}{5 \times 2}$ M.D. = 15 **91.** If the numbers are 5, 1, 8, 7, 2 then the coefficient of variation is: July - 2021 (a) 56.13% (b) 59.13% (c) 48.13% (d) 44.13% **Answer:** (b) Given data's are 1, 2, 5, 7, 8 Mean  $(\bar{x}) = \frac{\sum x}{N} = \frac{1+2+5+7+8}{5} = \frac{23}{5} = 4.6$ For S.D.  $d^2$ А d = (x - A)Х 1 5 -4 16 2 5 9 -3 5 5 0 0 7 5 2 4 8 5 3 9 N = 5 $d^2 = 38$ d = -2

S.D. = 
$$\sqrt{\frac{\sum d^2}{N} - \left(\frac{\sum d}{N}\right)^2} = \sqrt{\frac{38}{5} - \left(\frac{-2}{5}\right)^2}$$
  
=  $\sqrt{7.60 - 0.16}$   
=  $\sqrt{7.44} = 2.72756$   
Coeff of variation  
(C.V.) =  $\frac{S.D}{A.M} \times 100$   
=  $\frac{2.72756}{4.6} \times 100$   
= 59.13%  
If every observation is increased by 7 then:

**July – 2021** 

| Dispersio | n                                                                                                                                                                                        | 34.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GOPAL BHOOT                                                                                                             |  |  |  |  |  |  |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 93.       | <ul><li>(a) Standard deviation increased by 7</li><li>(c) Not affected at all</li><li>If the relationship between x and y i</li></ul>                                                    | (b) Mean devia<br>(d) Quartile devises given by $2x + 3y = 10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tion increased by 7<br>viation increased by 7<br>and the range of y is 10, then                                         |  |  |  |  |  |  |
|           | what is the range of x?                                                                                                                                                                  | $\int \frac{1}{2} \int $ | July - 2021                                                                                                             |  |  |  |  |  |  |
|           | (a) 10 (b) 18                                                                                                                                                                            | (c) 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (d) 15                                                                                                                  |  |  |  |  |  |  |
|           | Answer:                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                         |  |  |  |  |  |  |
|           | (d) Given equation                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                         |  |  |  |  |  |  |
|           | $2\mathbf{x} + 3\mathbf{y} = 10$                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                         |  |  |  |  |  |  |
|           | 2x + 3y - 10 = 0                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                         |  |  |  |  |  |  |
|           | $b = -\frac{coeff of x}{coeff of y} = -\frac{2}{3}$                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                         |  |  |  |  |  |  |
|           | Range of $y = [b]$ Range of                                                                                                                                                              | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                         |  |  |  |  |  |  |
|           | $10 = \left[-\frac{2}{2}\right] \times \text{Rar}$                                                                                                                                       | nge of x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                         |  |  |  |  |  |  |
|           | $10 = \frac{2}{3} \times \text{Range of}$                                                                                                                                                | of x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                         |  |  |  |  |  |  |
|           | Range of $x = 10 \times \frac{3}{2} = 15$                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                         |  |  |  |  |  |  |
| 94.       | The marks secured by 5 students in s<br>Range                                                                                                                                            | subject are 82, 73, 69, 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | , 66. What is the coefficient of <b>Dec 2021</b>                                                                        |  |  |  |  |  |  |
|           | (a) 0.12 (b) 12<br>Answer:                                                                                                                                                               | (c) 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (d) 0.012                                                                                                               |  |  |  |  |  |  |
|           | ( <b>b</b> ) Coefficient of Range $-\frac{Larg}{Larg}$                                                                                                                                   | est Observation–Small                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                         |  |  |  |  |  |  |
|           | Coefficient of Range = $\frac{84-}{84+}$                                                                                                                                                 | $\frac{66}{66} \times 100 = 12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                         |  |  |  |  |  |  |
| 95.       | For a data having odd number of v<br>value; similarly the difference betwee<br>second last and middle value so on. T<br>(a) Half of the range<br>(c) Mode                                | values, the difference be<br>een the second last and m<br>Therefore, the middle value<br>(b) Half of stan<br>(d) Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tween the last and the middle<br>niddle values is equal to that of<br>the is equal to <b>Dec 2021</b><br>dard deviation |  |  |  |  |  |  |
|           | Answer:<br>(d) Here No. of data's = odd (let 3)<br>i.e. a, b, c<br>Difference b/w the I <sup>st</sup> and the middle value<br>= Diff. b/w the last and the middle value<br>b - a = c - b |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                         |  |  |  |  |  |  |
| 96.       | 2b = a + c<br>$b = \frac{a+c}{2}$<br>The middle value is know<br>Mean Deviation of data 3, 10, 10, 4, 7                                                                                  | vn as <b>mean</b> and similarly<br>7, 18, 5 from mode is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | other case is also satisfied.<br>June 2022                                                                              |  |  |  |  |  |  |
|           | (a) 4.39 (b) 4.70                                                                                                                                                                        | (c) 4.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (d) 5.24                                                                                                                |  |  |  |  |  |  |
|           | (c) Mean deviation from mode<br>Here mode(Mo) = 10                                                                                                                                       | of following data 3, 10,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10, 4, 7, 18, 5.                                                                                                        |  |  |  |  |  |  |
|           | Table =                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                         |  |  |  |  |  |  |

| Х     | Mode (Mo) | (d) =  x - Mo   |
|-------|-----------|-----------------|
| 3     | 10        | 7               |
| 10    | 10        | 0               |
| 10    | 10        | 0               |
| 4     | 10        | 6               |
| 7     | 10        | 3               |
| 18    | 10        | 8               |
| 5     | 10        | 5               |
| N = 7 |           | $\sum  d  = 29$ |

|            |                                                                                   | M.D                                           | $=\frac{\sum  d }{N}=\frac{29}{7}$ | = 4.14                                   |                            |  |  |  |  |  |
|------------|-----------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------|------------------------------------------|----------------------------|--|--|--|--|--|
| 97.        | A M and Coefficient                                                               | of variation of                               | f x is 10 and                      | 1 40. What is the varian                 | nce 30-2x <b>June 2022</b> |  |  |  |  |  |
|            | (a) 64                                                                            | (b) 56                                        |                                    | (c) 49                                   | (d) 81                     |  |  |  |  |  |
|            | (a) A.M of $x =$                                                                  | 10                                            |                                    |                                          |                            |  |  |  |  |  |
|            | C.V  of  x = 4                                                                    | 40%                                           |                                    |                                          |                            |  |  |  |  |  |
|            | $CV = \frac{S.D}{4M} \times$                                                      | 100                                           |                                    |                                          |                            |  |  |  |  |  |
|            | $40 = \frac{S.D}{S.D} \times 1$                                                   | 100                                           |                                    |                                          |                            |  |  |  |  |  |
|            | $SD - \frac{10}{40 \times 10}$                                                    | 0                                             |                                    |                                          |                            |  |  |  |  |  |
|            | $S.D = \frac{100}{100}$                                                           |                                               |                                    |                                          |                            |  |  |  |  |  |
|            | 3.D = 4<br>i.e S.D of                                                             | $\mathbf{x} = 4$                              |                                    |                                          |                            |  |  |  |  |  |
|            | Here Let y =                                                                      | = 30 - 2x                                     |                                    |                                          |                            |  |  |  |  |  |
|            | 2x + y - 30                                                                       | = 0                                           |                                    |                                          |                            |  |  |  |  |  |
|            | $b = \frac{-Coeff of}{Coeff of}$                                                  | $\frac{1}{x} = \frac{-2}{1} = -2$             |                                    |                                          |                            |  |  |  |  |  |
|            | S.D of $y =  $                                                                    | b S.D of x                                    |                                    |                                          |                            |  |  |  |  |  |
|            | =  -2  ×                                                                          | $4 = 2 \times 4 = 8$                          |                                    |                                          |                            |  |  |  |  |  |
| 00         | = Varian                                                                          | ce of y = $(8)^2$ =                           | = 64                               | · / · · ·                                | 2022                       |  |  |  |  |  |
| 98.        | (a) Standard deviation                                                            | ing is based on                               | absolute de                        | (b) Mean deviation                       | 2022                       |  |  |  |  |  |
|            | (c) Range                                                                         | /11                                           |                                    | (d) Ouartile deviation                   |                            |  |  |  |  |  |
| <b>99.</b> | Following are the                                                                 | wages of 8 w                                  | orkers 82,                         | 96, 52, 75, 70, 65, 5                    | 50, 70. Find range and     |  |  |  |  |  |
|            | coefficient of range?                                                             | •                                             | June                               | 2022                                     |                            |  |  |  |  |  |
|            | (a) 46, 32.70                                                                     | (b) 43, 31.50                                 |                                    | (c) 46, 31.50                            | (d) 43, 32.70              |  |  |  |  |  |
|            | Answer:                                                                           | est No (S) -50                                |                                    |                                          |                            |  |  |  |  |  |
|            | (c) Here Sman                                                                     | cst NO(3) = 30                                |                                    |                                          |                            |  |  |  |  |  |
|            | Largest No (                                                                      | (L) = 96                                      |                                    |                                          |                            |  |  |  |  |  |
|            | Range = $L -$                                                                     | S                                             |                                    |                                          |                            |  |  |  |  |  |
|            | = 96 -                                                                            | - 50                                          |                                    |                                          |                            |  |  |  |  |  |
|            | = 40                                                                              | L-S                                           | 100                                |                                          |                            |  |  |  |  |  |
|            | 96-50                                                                             | $\operatorname{Cange} = \frac{1}{L+S} \times$ | 100                                |                                          |                            |  |  |  |  |  |
|            | $=\frac{10000}{96+50} \times 1$                                                   | 00                                            |                                    |                                          |                            |  |  |  |  |  |
|            | $=\frac{46}{146} \times 100$                                                      | )                                             |                                    |                                          |                            |  |  |  |  |  |
|            | = 31.50                                                                           |                                               |                                    |                                          |                            |  |  |  |  |  |
| 100.       | Find the standard de                                                              | viation and coe                               | efficient of                       | variation for. 1, 9, 8, 5,               | 7 <b>June 2022</b>         |  |  |  |  |  |
|            | (a) 2.828, 49.32                                                                  | (b) 2.828, 48                                 | .13                                | (c) 2.828, 47.13                         | (d) 2.282, 50.13           |  |  |  |  |  |
|            | (c) Given data                                                                    |                                               |                                    |                                          |                            |  |  |  |  |  |
|            | 1, 9, 8, 5, 7                                                                     |                                               |                                    |                                          |                            |  |  |  |  |  |
|            | mean $(\bar{x}) = \frac{\sum x}{\sum x} = \frac{1+9+8+5+7}{2} = \frac{30}{2} = 6$ |                                               |                                    |                                          |                            |  |  |  |  |  |
|            | for S.D.                                                                          |                                               |                                    |                                          |                            |  |  |  |  |  |
|            |                                                                                   |                                               | -                                  |                                          | <b>J</b> 2                 |  |  |  |  |  |
|            | X                                                                                 |                                               | Ľ                                  | $\mathbf{u} = (\mathbf{x} - \mathbf{x})$ | u-                         |  |  |  |  |  |
|            | 1                                                                                 | (                                             | 5                                  | -5                                       | 25                         |  |  |  |  |  |
|            | 9                                                                                 | (                                             | 5                                  | 3                                        | 9                          |  |  |  |  |  |
|            | 8                                                                                 | (                                             | 5                                  | 2                                        | 4                          |  |  |  |  |  |
|            | 5                                                                                 | (                                             | 5                                  | -1                                       | 1                          |  |  |  |  |  |
|            |                                                                                   | (                                             | 5                                  |                                          |                            |  |  |  |  |  |

Dispersion

34.19

|      | N= 5                                                                                          |                                                   | $d^2 = 40$                                      |
|------|-----------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------|
|      | S.D. = $\sqrt{\frac{\sum d^2}{N}} = \sqrt{\frac{40}{5}} = \sqrt{8}$                           |                                                   |                                                 |
|      | $=2\cdot\sqrt{2}$                                                                             |                                                   |                                                 |
|      | = 2.828                                                                                       |                                                   |                                                 |
|      | $C.V = \frac{3.D}{A.M} \times 100$                                                            |                                                   |                                                 |
|      | $=\frac{2.828}{6} \times 100 = 47.13\%$                                                       |                                                   |                                                 |
| 101. | If the coefficient of variation and standard arithmetic mean of the distribution is:          | deviation are 30 and Dec 2022                     | 12 respectively, then the                       |
|      | (a) 40 (b) 36                                                                                 | (c) 25                                            | (d) 19                                          |
|      | Answer:<br>(a) C V = 20 % S D = 12 find $\bar{x} = 2$                                         |                                                   |                                                 |
|      | (a) C. V. = 50 %, S.D. = 12 IIId $x = ?$<br>C. V. = $\frac{S.D.}{X} \times 100$               |                                                   |                                                 |
|      | $30 - \frac{12}{12} \times 100$                                                               |                                                   |                                                 |
|      | $M_{ean} - \frac{12 \times 100}{100} - 40$                                                    |                                                   |                                                 |
| 102. | $\frac{1}{30} = \frac{1}{30}$ is based on all the observ                                      | vations and                                       | is based on the central                         |
|      | fifty percent of the observations.                                                            | Dec 2022                                          |                                                 |
|      | (a) Mean deviation, Range                                                                     | (b) Mean deviation, c                             | uartile deviation                               |
| 103. | Which one of the following is not a method o                                                  | f measure of dispersio                            | n? <b>Dec 2022</b>                              |
|      | (a) standard deviation                                                                        | (b) Mean deviation                                | tion mothed                                     |
| 104. | If the first quartile in 56.50 and the third qu                                               | (d) Concurrent devia<br>artile is 77.50, then the | ne co-efficient of quartile                     |
|      | deviation is: Dec 2022                                                                        | · · · · · · · · · · · · · · · · · · ·             |                                                 |
|      | (a) 638.09 (b) 15.67<br>Answer:                                                               | (c) 63.80                                         | (d) 156.71                                      |
|      | (b) Here:                                                                                     |                                                   |                                                 |
|      | First quartile $Q_1 = 56.50$<br>Third quartile $Q_2 = 77.50$                                  |                                                   |                                                 |
|      | Coefficient of Q.D. = $\frac{Q_3 - Q_1}{Q_3 - Q_1} \times 100$                                |                                                   |                                                 |
|      | $= \begin{pmatrix} 2 & 2 \\ 2 & 3 + 2 \\ 2 & -56.50 \end{pmatrix}$                            | × 100                                             |                                                 |
|      | (77.50+56.50)<br>= $\frac{21}{21} \times 100$                                                 |                                                   |                                                 |
|      | 134                                                                                           |                                                   |                                                 |
| 40.  | = 15.67                                                                                       | 2200 N 1                                          |                                                 |
| 105. | If the sum of square of the values equals<br>Standard deviation is 7, what is the mean values | to 3390, Number of<br>the above observation       | observations are 30 and ations? <b>Dec 2022</b> |
|      | (a) 14 (b) 11                                                                                 | (c) 8                                             | (d) 5                                           |
|      | Answer:<br>(c) Here $\sum r^2 = 3390$ and $\sum D = 7$                                        |                                                   |                                                 |
|      | N = 30 $\bar{x}$ = ?                                                                          |                                                   |                                                 |
|      | We know that :                                                                                |                                                   |                                                 |
|      | S.D. = $\sqrt{\frac{\sum x^2}{N} - (\overline{x})^2}$                                         |                                                   |                                                 |
|      | $7 = \sqrt{\frac{3390}{7} - (x)^2}$                                                           |                                                   |                                                 |
|      | $\sqrt{30}$ on squaring both side                                                             |                                                   |                                                 |
|      | $(7)^2 = \frac{3390}{22} - \bar{x}^2$                                                         |                                                   |                                                 |
|      | $49 = \frac{30}{113} - (\overline{x})^2$                                                      |                                                   |                                                 |
|      | $(\overline{(x)}^2 = 113 - 49$                                                                |                                                   |                                                 |

 $(\overline{x})^2 = 64$  $\bar{x} = \sqrt{64} = 8$ Mean  $(\bar{x}) = 8$ **106.** If the variance of random variable 'x' is 17, then what is variance of y = 2x + 5? **Dec 2022** (a) 34 (b) 39 (c) 68(d) 78 Answer: (c) Given, v(x) = 17S.D of x =  $\sqrt{17}$ Given Equation y = 2x + 52x - y + 5 = 0 $B = \frac{-Coeffiofx}{Coeffiofy} = \frac{-2}{-1} = 2$ S.D of y = |b| S.D of x  $= |2| \times \sqrt{17}$  $= 2\sqrt{17}$  $v(y) = (2\sqrt{17})^2$  $= 4 \times 17$ v(y) = 68**107.** If the variance of given data is 12, and their mean value is 40, what is coefficient of variation **Dec 2022** (CV)? (a) 5.66% (b) 6.66% (c) 7.50% (d) 8.65% **Answer:** (d) Variance = 12 $S.D = \sqrt{12} = 2\sqrt{3}$  $Mean (\bar{x}) = 40$   $C.V = \frac{S.D}{Mean} \times 100$   $= \frac{2\sqrt{3}}{40} \times 100$ = 8.65%**108.** In a given set if all data are of same value then variance would be: **Dec 2022** (a) 0(b) 1 (c) -1 (d) 0.5 **109.** If x and y are related as 4x+3y+11= and mean deviation of y is 7.2 then mean deviation of xis? June 2023 (c) 4.20 (d) 5.40 (a) 2.70 (b) 7.20 Answer: (d) Given Equation 4x + 3y + 11 = 0 $b = \frac{-\text{Coeff of } x}{\text{Coeff of } y} = \frac{-4}{3}$ M.D of y = |b| M.D of x 7.2 =  $\left|\frac{-4}{3}\right| \times M.D$  of x  $7.2 = \frac{4}{3} \times M.D$  of x M.D of  $x = \frac{3}{4} \times 7.2$ = 5.40**110.** If the first quartile is 42.75 and the third quartile is 74.25 then the co-efficient of QD is . June 2023 (a) 29.62 (b)15.75 (c) 17.57 (d) 0.2692 Answer: (d) First Quartile  $(Q_1) = 42.75$ Third Quartile  $(Q_3) = 74.25$ Coefficient of Q.D. =  $\frac{Q_3 - Q_1}{Q_3 + Q_1}$ 

Dispersion

34.21

$$= \left(\frac{74.25 - 42.75}{74.25 + 42.75}\right)$$
$$= \frac{31.50}{117}$$
$$= 0.2692$$

**111.** Find mean deviation about mean for the date 12, 16, 21, 30, 35,39, 40June 2023(a) 9.14(b) 9.14(c) 8.91(d) 9.81

Answer: (b) Given

**b**) Given data 12, 16, 21, 30, 35, 39, 40  
Mean (x) = 
$$\frac{\sum x}{N} = \frac{12+16+21+30+35+39+40}{7}$$

$$=\frac{193}{7}$$
  
- 27 57

| - 21.51 |                |                                                       |
|---------|----------------|-------------------------------------------------------|
| X       | $\overline{x}$ | $ \mathbf{d}  =  \mathbf{x} - \overline{\mathbf{x}} $ |
| 12      | 27.57          | 15.57                                                 |
| 16      | 27.57          | 11.57                                                 |
| 21      | 27.57          | 6.57                                                  |
| 30      | 27.57          | 2.43                                                  |
| 35      | 27.57          | 7.43                                                  |
| 39      | 27.57          | 11.43                                                 |
| 40      | 27.57          | 12.43                                                 |
| N= 7    |                | $\sum  d  = 67.43$                                    |

M.D.  $=\frac{\sum |d|}{N} = \frac{67.43}{7} = 9.63$  (approx)

**112.** If the Standard Deviation of data 2,4,5,6,8,17, is 4. 47 then Standard Deviation of the data 4,8,10,12,16,34,is . June 2023 (a) 4.47 (b) 8.94 (c) 13.41 (d) 2.24

(a) 4.47 Answer:

ver:

(b) By shifting the scale S.D. is changed

S.D. of 2, 4, 5, 6, 8, 17 is 4.47

then S.D. of 4, 8, 10, 12, 16, 34 is 2 × 4.47 = 8.94

(Since, all observation is doubled so S.D. is also doubled)

113. The mean and variance of a group of 100 observations are 8 and 9 respectively of 100 observations, the mean and standard deviation of 60 observation 10 and 2 respectively. Find the standard deviation of remaining 40. June 2023

(a) 4.5
(b) 3.5
(c) 2.5
(d) 1.5

Answer:

```
(d) Total No. of observation = 100
       Combined mean (\bar{x}) = 8
        Combined S.D. (\sigma) = \sqrt{9} = 3
        No. of observation of 1^{st} group (n_1) = 60
        Mean of 1^{\text{st}} group (\bar{x}_1) = 10
         S.D. of 1^{st} group (\sigma_1) = 2
        No. of observation of 2^{nd} group (n_2) = 100 - 60 = 40
         Mean of 2^{nd} group (\bar{x}_2) = ?
         S.D. of 2^{nd} group (\sigma_2) = ?
           Now
           Combined Mean (\bar{\mathbf{x}}) = \frac{\mathbf{n}_1 \bar{\mathbf{x}}_1 + \mathbf{n}_2 \bar{\mathbf{x}}_2}{\mathbf{n}_1 + \mathbf{n}_2}
             8 = \frac{60 \times 10 + 40 \times \bar{x}_2}{60 \times 10}
                       60+40
             800 = 600 + 40\overline{x}_2
             200 = 40\overline{x}_2
             \overline{\mathbf{x}}_2 = 5
```

Now d<sub>1</sub> = 
$$\bar{x}_1$$
,  $\bar{x} = 10$ ,  $8 = 2$   
d<sub>2</sub> =  $\bar{x}_2$ ,  $\bar{x} = 5$ ,  $8 = 3$   
Combined S.D. ( $\sigma$ ) =  $\sqrt{\frac{n_1\sigma_1^2 + n_2\sigma_2^2 + n_1d_1^2 + n_2d_2^2}{n_1 + n_2}}$   
 $3 = \sqrt{\frac{60\times 2^2 + 40\sigma_2^2 + 60\times 4 + 40\times(3)^2}{60 + 40}}$   
on squaring  
( $3$ )<sup>2</sup> =  $\left(\sqrt{\frac{60\times 4 + 40\times \sigma_2^2 + 60\times 4 + 40\times(9)}{60 + 40}}\right)^2$   
 $9 = \frac{240 + 40\sigma_2^2 + 240 + 360}{100}$   
 $900 = 480 + 40\sigma_2^2 + 360$   
 $900 - 480 - 360 = 40\sigma_2^2$   
 $\sigma_2^2 = \frac{60}{40}$   
 $\sigma_2^2 = 1.5$   
Variance = 1.5  
114. For the given set normally distributed data , the following statistical data are know: Mean =6  
; Standard Deviation =2.6; Median = 5 and Q deviation = 1.5, then the coefficient of quartile deviation equals to. June 2023  
(a) 30 (b) 32 (c) 25 (d) 39  
**Answer :**  
(a) Mean = 6, S.D = 2.6, Median = 5  
Q.D = 1.5, Coeff of Q.D = ?  
Coeff of Q.D =  $\frac{q_2 q_1}{q_3 q_1^2} \times 100$   
 $= \frac{\left(\frac{q_2 - q_1}{q_3 q_1}\right) \times 100$   
 $= \frac{q_2 b}{Median} \times 100$   
 $= \frac{1.5}{5} \times 100$   
 $= \frac{1.5}{5} \times 100$ 

- **115.** If the quartile deviation is 12 and the first quartile is 25, then the value of the third quartile is : dec 2023
  - (a) 37 (b) 49 (c) 61 (d) 60 Answer : (b) Here , Q.D = 12 , Q<sub>1</sub> = 25 , Q<sub>3</sub> = ? Quartile Deviation Q.D =  $\frac{Q_3 - Q_1}{2}$   $12 = \frac{Q_3 - 25}{2}$   $24 = Q_3 - 25$   $Q_3 = 24 + 25$  $Q_3 = 49$
- 116. If 'x' and 'y' are related as 3x-4y=20 and the quartile deviation of 'x' is 12, then the quartile of 'y' is: dec 2023

  (a) 9
  (b) 8
  (c) 7
  (d) 6

of 'y' is: dec 2023  
(a) 9 (b) 8  
Answer:  
(a) Given Equation 
$$3x - 4y = 20$$
  
 $3x - 4y - 20 = 0$   
 $b = \frac{-Coeff.ofx}{Coeff.ofy} = \frac{-3}{-4} = \frac{3}{4}$   
Q.D. of  $y = \int b \int Q.D.$  of  $x = \frac{3}{4} \times 12$ 

| $=\frac{3}{4}$ | × | 12 | = 9 |  |
|----------------|---|----|-----|--|
|----------------|---|----|-----|--|

|     | Answer Key |     |   |     |   |     |   |     |   |     |   |     |   |     |   |    |   |     |   |
|-----|------------|-----|---|-----|---|-----|---|-----|---|-----|---|-----|---|-----|---|----|---|-----|---|
| 1   | a          | 2   | с | 3   | с | 4   | b | 5   | a | 6   | a | 7   | d | 8   | a | 9  | d | 10  | d |
| 11  | с          | 12  | b | 13  | b | 14  | с | 15  | с | 16  | b | 17  | a | 18  | b | 19 | с | 20  | b |
| 21  | b          | 22  | b | 23  | b | 24  | c | 25  | c | 26  | с | 27  | b | 28  | b | 29 | b | 30  | d |
| 31  | с          | 32  | с | 33  | a | 34  | d | 35  | с | 36  | с | 37  | с | 38  | a | 39 | b | 40  | a |
| 41  | a          | 42  | a | 43  | d | 44  | с | 45  | b | 46  | d | 47  | b | 48  | a | 49 | a | 50  | b |
| 51  | d          | 52  | d | 53  | d | 54  | - | 55  | - | 56  | - | 57  | - | 58  | с | 59 | a | 60  | b |
| 61  | с          | 62  | b | 63  | b | 64  | с | 65  | d | 66  | с | 67  | с | 68  | d | 69 | с | 70  | a |
| 71  | a          | 72  | с | 73  | b | 74  | d | 75  | b | 76  | a | 77  | b | 78  | d | 79 | b | 80  | d |
| 81  | c          | 82  | b | 83  | d | 84  | с | 85  | d | 86  | с | 87  | с | 88  | c | 89 | b | 90  | a |
| 91  | b          | 92  | с | 93  | d | 94  | b | 95  | d | 96  | с | 97  | a | 98  | b | 99 | с | 100 | c |
| 101 | a          | 102 | b | 103 | d | 104 | b | 105 | c | 106 | с | 107 | d | 108 | a |    |   |     |   |

1.

2.

3.

(a) -0.97

(a) 0.267

Nov-2006

Feb-2007

**Mav-2007** 

# CHAPTER **CORRELATION**

#### **PAST YEAR QUESTIONS** The coefficient of correlation r between x and y when : Cov (x, y) = -16.5, Var (x) = 2.89, Var(y) = 100 is: (b) 0.97 (c) 0.89(d) -0.89 If the sum of squares of the rank difference in mathematics and physics marks of 10 students is ,22, then the coefficient of rank correlation is: (c) 0.92 (d) None (b) 0.867 The coefficient of correlation between X and Y is 0.6. U and V are two variables defined as

 $U = \frac{x-3}{2}$ ,  $V = \frac{y-2}{3}$  is then the coefficient of correlation between U and V is : (c) 0.8 (b) 0.4 (d) 1 (a) 0.64. For 10 pairs of observations, number of concurrent deviations was found to be 4. What is the value of the coefficient of concurrent deviation ? Aug-2007  $(b)\frac{1}{3}$  $(c) - \frac{1}{2}$ (a)  $\sqrt{0.2}$ (d)  $-\sqrt{0.2}$ 

If the covariance between two variables is 20 and the variance of one of the variables is 16, 5. what would be the variance of the other variable? Aug-2007 (a) More than 10 (b) 25 or more (c) More than 1.25 (d) Less than 10

#### 6. In rank correlation, the association need not be linear: Nov-2007 (d) Partly False (c) Partly True (a) True (b) False

- If the sum of square of differences of rank is 50 and number of items is 8 then what is the 7. value of rank correlation coefficient. **Dec - 2008** (a) 0.59(b) 0.40(c) 0.36(d) 0.63
- If coefficient of correlation between x and y is 0.46. Find coefficient of correlation between x 8. and v/2**Dec - 2008** (a) 0.46(b) 0.92 (c) - 0.46(d) - 0.92

9. Correlation coefficient between X and Y will be negative when:-**Dec - 2009** (b) X is increasing, Y is decreasing (a) X and Y are decreasing (c) X and Y are increasing (d) None of these

**10.** If 'P' is the simple correlation coefficient, the quantity  $P^2$  is known as: **June-2010** (b) Coefficient of Non-determination (a) Coefficient of determination (c) Coefficient of alienation (d) None of the above.

### Answer:

(a) Better measure for measuring correlation is provided by the square of correlation coefficient, know as

'coefficient of determination' which is expressed as  $r^2 = rac{Explained Variance}{Total Variance}$ 

11. If the correlation between x and y is r, then between  $U = \frac{x-5}{10}$  and  $V = \frac{y-7}{2}$  is **June-2010** (a) r (b) - r (c) (r-5)/2 (d) (r-7)/10

### (a) r Answer:

(a)  $x - 10u = 5 \rightarrow (1)$  eq.

 $y - 2v = 7 \longrightarrow (2)$  eq.

(b) – r

Since correlation coefficient (Karl Pearson's) is independent of both scale and origin,

therefore.

P(u, v) = p(x, y) = rIt may be noted that if  $u_1 = ax_1 + b$  and  $v_i = cy_i + d$ , then r(u, v) = p(x, y) if a and c are of same signs r(u, v) = -p(x, y) if a and c are of opposite signs

12. If the sum of the product of deviations of x and y series from their means is zero, then the

| Correlation |                      |                                                                    | 35.2                                                                                          | 6                     | <b>FOPAL BHOOT</b> |
|-------------|----------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------|--------------------|
|             | coefficient of c     | orrelation will be                                                 |                                                                                               |                       | Dec - 2010         |
|             | (a) 1                | (b) –1                                                             | (c) 0                                                                                         | (d) None of t         | these              |
|             | Answer:              |                                                                    |                                                                                               |                       |                    |
|             | (c) Coeffi           | cient of correlation $= \frac{Cov}{Sx}$                            | $\frac{(x,y)}{x  Sy} = \frac{\sum (x-\bar{x})(y-\bar{y})}{n \times \sigma_x \times \sigma_y}$ |                       |                    |
|             | Cov (                | $\mathbf{x}, \mathbf{y}) = \frac{\sum xy}{x} - \bar{x}\bar{y} = 0$ |                                                                                               |                       |                    |
|             | It is g              | iven that the above value                                          | ;                                                                                             |                       |                    |
|             | $\Rightarrow \Sigma$ | $(x-\bar{x})(y-\bar{y})=0$ (Nu                                     | merator)                                                                                      |                       |                    |
|             | Hence, Coeffic       | ient of correlation = $\frac{0}{Sx \times x}$                      | $\frac{1}{sy} = 0$                                                                            |                       |                    |
| 13.         | Three competi        | tors in a contest are r                                            | anked by two judg                                                                             | ges in the order 1,2, | 3 and 2,3,1        |
|             | Spearman's ran       | nk correlation coefficient                                         |                                                                                               |                       | June - 2011        |
|             | (a) -0.5             | (b) -0.8                                                           | (c) 0.5                                                                                       | (d) 0.8               |                    |
|             | Answer:              |                                                                    |                                                                                               |                       |                    |
|             | <b>(a)</b>           |                                                                    |                                                                                               |                       |                    |

- - -

Rank by Ist Judge R1  $D^2$ Rank by II<sup>nd</sup> Diff  $D = R_1 - R_2$ Judge R<sub>2</sub> 2 -1 1 1 2 3 -1 1 here  $\frac{1}{n=3}$ 4 1 +2 $\overline{\Sigma D^2} = 6$ 

 $6\sum D^2$ Spearman's Rank Correlation coefficient = 1  $n(n^2-1)$  $=1 - \frac{6 \times 6}{3(3^2 - 1)}$ 

. . .

$$= -0.5$$

- 14. In a normal distribution, the relationship between the three most commonly used measures of dispersion are: **June - 2012** 
  - (a) Standard Deviation > Mean Deviation > Quartile Deviation
  - (b) Mean Deviation > Standard Deviation > Quartile Deviation
  - (c) Standard Deviation > Quartile Deviation > Mean Deviation
  - (d) Quartile Deviation > Mean Deviation > Standard Deviation
- 15. In Spearman's Correlation Coefficient, the sum of the differences of ranks between two variables shall be **Dec-2012** (a) 0 (b) 1 (d) None of the above. (c) -1
- 16. The coefficient of correlation between two variable x and y is 0.28. Their covariance is 7.6. If the variance of x is 9, then the standard deviation of y is: **June - 2013** a) 8.048 b) 9.048 c) 10.048 d) 11.048

**Answer: (b)** Coeff of correlation (r) = 0.28Cov(x,y) = 7,6Var(x) = 9S.D.  $(\sigma x) = \sqrt{9} = 3$ S.D. of  $y(\sigma y) = ?$ We know that  $r = \frac{Cov(x,y)}{Cov(x,y)}$ σχ,σγ  $0.28 = \frac{7.6}{3 \times \sigma y}$  $\sigma y = \frac{760^{190}}{3 \times 0.28}$ 

 $\sigma v = 9.048$ 

**17.** Two variables x and y are related according to 4x + 3y = 7. Then x and y are: **June - 2013** a) Positively correlated b) Negatively correlated. c) Correlation is zero d) None of these.

|     | Answer:                                                              |                                 |                                |
|-----|----------------------------------------------------------------------|---------------------------------|--------------------------------|
|     | (b) Given Regression Equation                                        | n                               |                                |
|     | 4x + 3y = 7 and 4                                                    | $\mathbf{x} + 3\mathbf{y} = 7$  |                                |
|     | $3y = 7 - 4x \qquad 4$                                               | $\mathbf{x} = 7 - 3\mathbf{y}$  |                                |
|     | $y = \frac{7}{3} \frac{-4x}{3}$                                      | $x = \frac{7}{4} \frac{-3y}{4}$ |                                |
|     | y = a + bx                                                           | a = a + by                      |                                |
|     | b = -4/3 = byx b                                                     | =-3/4 = bxy                     |                                |
|     | $r = \pm \sqrt{byx \times bxy}$                                      |                                 |                                |
|     | $=\pm\sqrt{(\frac{-4}{3})(\frac{-3}{4})}$                            |                                 |                                |
|     | $= -\sqrt{1}$                                                        | [∴both                          | bxy & byx are negative]        |
|     | r = -1 (Negative correlated                                          | 1)                              |                                |
| 18. | Price and Demand is the example                                      | for                             | Dec - 2013                     |
|     | (a) No correlation (b) Positiv                                       | ve correlation (c) Negative     | (d) None of the above          |
| 19. | When each individual gets the                                        | exactly opposite rank by th     | e two Judges, then the rank    |
|     | correlation will be                                                  |                                 | Dec - 2013                     |
|     | a) 0 b) -1                                                           | c) +1                           | d) 1/2                         |
| 20. | If the value of correlation coeff                                    | icient between x & y is 1,      | then the value of correlation  |
|     | coefficient between $x - 2$ and $-y/2$                               | 2 +1is:                         | <b>Dec - 2014</b>              |
|     | a) 1 b) -1                                                           | c) -1/2                         | d) 1/2                         |
|     | Answer:                                                              |                                 |                                |
|     | (b) Given $r_{xy} = 1$                                               |                                 |                                |
|     | Let $x - 2 = u$ and                                                  | $\frac{-y}{2} + 1 = v$          |                                |
|     | x = 2 + u                                                            | $\frac{-y+z}{2} = v$            |                                |
|     | Comparing from                                                       | L                               |                                |
|     | x = a + bu                                                           | -y + 2 = 2v                     |                                |
|     | we get $b = 1$                                                       | y = 2 - 2v                      |                                |
|     | -                                                                    | on comparing                    |                                |
|     |                                                                      | y = c + dv                      |                                |
|     |                                                                      | we get                          |                                |
|     |                                                                      | d = -2                          |                                |
|     | $\mathbf{r}_{xy} = \frac{b.d}{1000000000000000000000000000000000000$ |                                 |                                |
|     |                                                                      |                                 |                                |
|     | $1 - \frac{1 \times (-2)}{2} r$                                      |                                 |                                |
|     | $1 - \frac{1}{ 1  -2 } I_{uv}$                                       |                                 |                                |
|     | $1 = \frac{-2}{2} r_{uv}$                                            |                                 |                                |
|     | $r_{\rm nw} = -1$                                                    |                                 |                                |
| 21. | When the correlation coefficient r                                   | is equal to $+1$ all the points | in a scatter diagram would be  |
|     | June-2015                                                            |                                 | and a sourcer angluin would be |
|     | a) On a straight line directed from                                  | upper left to lower right       |                                |

- b) On a straight line directed from lower left to upper right
- c) On a straight line d) Both (a) and (b)
- 22. In case of "Insurance Companies" profits & the number of claims they have to pay there is \_\_\_\_\_\_ Dec-2015

a) Positive b) Negative c) No Correlation d) None of the above 23. The coefficient of correlation between x and y is 0.6. If x and y values are multiplied by -1, then the correlation will be: **June-2017** a) 0.6 b) - 0.6 c) 1/0.6 d) 1-0.6 24. The regression coefficient is independent of the change of **Dec-2017** c. Both (a) and (b) a. Origin b. Scale d. Neither (a) nor (b). **25.** r = 0.6 then the coefficient of non-determination will be: **Dec-2017** (a) 0.40 (b) -0.60 (c) 0.36 (d) 0.64

|            | Answer:                      |                           |                             |                      |                                       |              |                             |
|------------|------------------------------|---------------------------|-----------------------------|----------------------|---------------------------------------|--------------|-----------------------------|
|            | (d) Given r                  | = 0.06                    |                             |                      |                                       |              |                             |
|            | Coeffic                      | ient of non deter         | mination $= 1$ -            | $-r^2$               |                                       |              |                             |
|            |                              |                           | = 1 -                       | $-(0.6)^2$           |                                       |              |                             |
|            |                              |                           | = 1 -                       | - 0.36               |                                       |              |                             |
|            |                              |                           | = 0.0                       | 54                   |                                       |              |                             |
| 26.        | The correlation              | coefficient (r) is        | the                         | of the               | two regress                           | ion coeffic  | cients (b <sub>vx</sub> and |
|            | b <sub>xv</sub> )            |                           |                             |                      | U                                     |              | <b>Dec-2017</b>             |
|            | (a) AM                       | (b) GM                    |                             | (c) HM               | (                                     | d) Median    |                             |
|            | Answer:                      |                           |                             | (-)                  | ,                                     |              |                             |
|            | (b) The coe                  | efficient of corre        | elation (r) is the          | e G.M. of tl         | he two regre                          | ssion        |                             |
|            | coeffic                      | ient (by $x \times bxy$ ) | (1) 15 th                   |                      |                                       | 001011       |                             |
|            | $r = \sqrt{h}$               | $\frac{1}{2}$             |                             |                      |                                       |              |                             |
| 27         | $1 - \sqrt{D}$               | $y_X \wedge D_X y$        | dia anome ana arr           |                      |                                       | a            | an ia Mary                  |
| 21.        | If the plotted po            | ints is a scatter (       | magram are eve              | enty distrib         | utea, then th                         | e correlatio | on is <b>iviay-</b>         |
|            | 2018                         |                           |                             |                      |                                       |              |                             |
| •••        | (a) Zero                     | (b) Neg                   | ative                       | (c) Positive         | e (                                   | (d) (a) Or ( | b)                          |
| 28.        | The covariance               | between two va            | riables is                  |                      |                                       |              | May-2018                    |
|            | (a) Strictly posit           | tive                      |                             | (b) Strictly         | negative                              |              |                             |
|            | (c) Always Zero              | )                         |                             | (d) Either p         | positive or ne                        | egative or a | zero                        |
| 29.        | In the method                | d of Concurre             | nt Deviations               | , only the           | e directions                          | s of char    | nge (Positive               |
|            | direction/Negati             | ive direction) in         | the variables               | are taken ii         | nto account                           | for calcula  | ation of May-               |
|            | 2018                         |                           |                             |                      |                                       |              |                             |
|            | (a) Coefficient of           | of SD.                    |                             | (b) Coeffic          | ient of regre                         | ssion        |                             |
|            | (c) Coefficient of           | of correlation            |                             | (d) none             |                                       |              |                             |
| <b>30.</b> | Correlation coef             | fficient is of the        | units of measu              | rement.              |                                       |              | <b>May-2018</b>             |
|            | (a) dependent                | (b) inde                  | pendent                     | (c) both             | (                                     | d) none      |                             |
| 31.        | In case speed of             | f an automobile           | and the distance            | e required           | to stop the d                         | car after ap | plying brakes               |
|            | correlation is               |                           |                             |                      |                                       |              | <b>May-2018</b>             |
|            | (a) Positive                 | (b) Neg                   | ative                       | (c) Zero             | (                                     | d) None      |                             |
| 32.        | Rank correlation             | n coefficient lies        | between                     |                      |                                       |              | <b>May-2018</b>             |
|            | (a) 0 to 1                   |                           |                             | (b) - 1 to +         | 1 inclusive                           | of these va  | lue                         |
|            | (c) - 1 to 0                 |                           |                             | (d) both             |                                       |              |                             |
| 33.        | If the correlation           | on coefficient b          | between the va              | riables X            | and Y is 0                            | .5. then the | ne correlation              |
|            | coefficient betw             | een the variable          | x = 2x - 4 and $3 = 2x - 4$ | -2v is               |                                       | ,            | Nov-2018                    |
|            | (a) 1                        | (b) 0.5                   |                             | (c) - 0.5            | (                                     | (d) 0        |                             |
|            | Answer:                      |                           |                             | (-)                  | ,                                     |              |                             |
|            | (c) If coeff                 | icient of correla         | tion $r_{xy} = 0.5$         |                      |                                       |              |                             |
|            | Given u                      | x = 2x - 4                | and $v =$                   | 3 - 2v               |                                       |              |                             |
|            | $2\mathbf{x} - \mathbf{u} =$ | -4 = 0                    | and 2v                      | -5 - 2y + y - 3 = 0  |                                       |              |                             |
|            | Coej                         | ff.ofu                    | 1 -Coe                      | f.of v               |                                       |              |                             |
|            | $b = \frac{1}{Coef}$         | $f_{f,ofx}$ and           | $d = \frac{1}{Coej}$        | f.ofy                |                                       |              |                             |
|            | $=\frac{-(-1)}{}$            |                           | $d = \frac{-1}{-1}$         |                      |                                       |              |                             |
|            | 2                            |                           | 2<br>-1                     |                      |                                       |              |                             |
|            | $b = \frac{1}{2}$            |                           | $d = \frac{1}{2}$           |                      |                                       |              |                             |
|            | Here, b a                    | and d both have           | different sign s            | o $r_{uv} = -r_{xy}$ |                                       |              |                             |
|            |                              |                           | -                           | = -0.                | 5                                     |              |                             |
| 34.        | Given that                   |                           |                             |                      |                                       |              | June-2019                   |
|            | Х                            | -3                        | -3/2                        | 0                    |                                       | 3/2          | 3                           |
|            | Y                            | 9                         | 9/4                         | 0                    | (                                     | 9/4          | 9                           |
|            | Then Karl Pears              | son's coefficient         | of correlation i            | S                    |                                       | 1            |                             |
|            | (a) Positive                 | (b) Zero                  | )                           | (c) Negativ          | e (                                   | d) None      |                             |
|            | Answer:                      |                           |                             |                      | · · · · · · · · · · · · · · · · · · · | ,            |                             |
|            | ( <b>b</b> ) Given t         | that                      |                             |                      |                                       |              |                             |
|            |                              |                           |                             |                      |                                       |              |                             |
|            |                              | x -3                      | -3/2                        | 0                    | 3/2                                   | 3            |                             |

| Correlation |   |   | 35.5 |   |     | GC | PAL BHOOT |
|-------------|---|---|------|---|-----|----|-----------|
|             | У | 9 | 9/4  | 0 | 9/4 | 9  |           |

|           | then                                                                                           |                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |                        |                   |                  |                |  |  |
|-----------|------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------|-------------------|------------------|----------------|--|--|
|           | Karlp                                                                                          | bearson's C             | oefficient of C                         | orrelation is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | "Zero" be                    | ecause it is           | equally d         | listribut        | te.            |  |  |
| 35.       | Deter                                                                                          | rmine Spea              | rman's rank co                          | rrelation from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | m the give                   | en data $\sum a$       | $l^2 = 30$ ,      | n = 10:          | June-2019      |  |  |
|           | (a) r =                                                                                        | = 0.82                  | (b) r =                                 | 0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (c) $r =$                    | 0.40                   | 9d)               | None of          | of the above   |  |  |
|           | Ansv                                                                                           | ver:                    |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |                        | ,                 |                  |                |  |  |
|           | (                                                                                              | <b>a</b> ) Here, $\sum$ | $d^2 = 30, n = 1$                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                              |                        |                   |                  |                |  |  |
|           |                                                                                                | Spearm                  | an's rank corre                         | elation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              |                        |                   |                  |                |  |  |
|           |                                                                                                | r = 1                   | $6\sum d^2$                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |                        |                   |                  |                |  |  |
|           |                                                                                                | $I_n - I$               | $-\frac{1}{n(n^2-1)}$                   | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                            |                        |                   |                  |                |  |  |
|           | $= 1 - \frac{6\times30}{10(10^2 - 1)} = 1 - \frac{180}{990} = 1 - \frac{2}{11} = \frac{9}{11}$ |                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |                        |                   |                  |                |  |  |
|           |                                                                                                | = 0                     | 82                                      | 990 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 11                         |                        |                   |                  |                |  |  |
| 36.       | . What is the coefficient of correlation from the following data? Nov-2019                     |                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |                        |                   |                  |                |  |  |
|           | x.                                                                                             |                         | 1                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                              | 3                      | 4                 |                  | 5              |  |  |
|           | V'                                                                                             |                         | 5                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                              | 3                      | 2                 |                  | 6              |  |  |
|           | (a) 0                                                                                          |                         | $\frac{(b)}{(b)} = 0$                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (c) - (c)                    | ) 85                   | (d)               | 0.82             | 0              |  |  |
| 37.       | If the                                                                                         | nlotted no              | ints in a scatte                        | er diagram lie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e from un                    | ner left to            | lower rig         | 0.02<br>ht_ther  | correlation is |  |  |
| 011       | Nov-                                                                                           | 2019                    | fints in a source                       | and and a second s | e nom up                     | per lett to            |                   | int, thei        |                |  |  |
|           | (a) Po                                                                                         | ositive                 | (b) Ne                                  | gative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (c) Ze                       | ro                     | (d)               | None o           | f these        |  |  |
| 38.       | Whic                                                                                           | h of the fol            | llowing is spur                         | ious correlat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0) = 0 ion?                 |                        |                   |                  | Nov - 2020     |  |  |
|           | (a) C                                                                                          | orrelation b            | between two va                          | riables havi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ng a causa                   | l relations            | hip               |                  |                |  |  |
|           | (b) N                                                                                          | legative con            | relation                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                            |                        | 1                 |                  |                |  |  |
|           | (c) B                                                                                          | ad relation             | between two v                           | ariables(d) V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | /ery low o                   | correlation            | between           | two vai          | riables.       |  |  |
| 39.       | Scatt                                                                                          | er diagram              | does not help                           | us to ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              |                        |                   |                  | Nov - 2020     |  |  |
| 071       | (a) Fi                                                                                         | ind the type            | e of correlation                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (b) Ide                      | entify whet            | her varial        | oles con         | related or not |  |  |
|           | (c) D                                                                                          | etermine li             | near or non-lin                         | ear correlation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | on (d) fin                   | d the num              | erical valu       | ie of co         | orrelation     |  |  |
| 40        | The                                                                                            | overience               | hatwaan two y                           | ariables is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |                        |                   |                  | Nov. 2020      |  |  |
| 40.       | (a) St                                                                                         | trictly posit           | ivo                                     | allables is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $(\mathbf{b})$ Sta           | riotly pogo            | ivo               |                  | 100V - 2020    |  |  |
|           | (a) SI                                                                                         | luovo Zoro              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (d) Ei                       | thor positiv           | lve<br>vo or pogo | tivo or          | Zaro           |  |  |
| <b>11</b> | (C) A                                                                                          | he set of               | observations                            | ((1, 2), (2, 5))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (u) EI                       | 4.8 (5.10              | the w             |                  | Lent noncon's  |  |  |
| 41.       | FUL L                                                                                          | ine set of a            | ouservations                            | $\{(1,2), (2,3)\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (3,7), (4)                   | +,0), (3,10            | )} the va         | ilue of          | Lop 2021       |  |  |
|           | (a) 0                                                                                          | 755                     | (b) 0 6                                 | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (c) 0.5                      | \$25                   | (d)               | 0 985            | Jan – 2021     |  |  |
|           | (a) 0.                                                                                         | ver.                    | (0) 0.0                                 | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0) 0.2                      | 125                    | (u)               | 0.785            |                |  |  |
|           | (                                                                                              | d)                      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |                        |                   |                  |                |  |  |
|           | (                                                                                              | x                       | $d\mathbf{x} = \mathbf{x} - \mathbf{A}$ | $dx^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | v                            | dv = v -               | B d               | $ \mathbf{v}^2 $ | dx.dv          |  |  |
|           |                                                                                                |                         | = x - 3                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                            | = v - 7                |                   | 5                |                |  |  |
|           |                                                                                                | 1                       | 1 - 3 = -2                              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                            | 2 - 7 = -              | -5 2              | 25               | 10             |  |  |
|           |                                                                                                | 2                       | 2 - 3 = -1                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                            | 5 - 7 = -              | -2                | 4                | 2              |  |  |
|           |                                                                                                | A (3)                   | 3 - 3 = 0                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7                            | 7 – 7 =                | 0                 | 0                | 0              |  |  |
|           |                                                                                                | 4                       | 4 - 3 = 1                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8                            | 8 – 7 =                | 1                 | 1                | 1              |  |  |
|           |                                                                                                | 5                       | 5 - 3 = 2                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10                           | 10 - 7 =               | 3                 | 9                | 6              |  |  |
|           |                                                                                                | $\sum x = 15$           | $\sum dx = 0$                           | $\sum dx^2 = 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\sum y$                     | $\sum dy = -$          | $-3$ $\sum$       | $dy^2$           | $\sum dxdy$    |  |  |
|           |                                                                                                |                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | =32                          |                        | =                 | 39               | =19            |  |  |
|           |                                                                                                |                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |                        |                   |                  |                |  |  |
|           |                                                                                                | Coff                    | of correlation r                        | $=$ $N \sum d$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $xd_y - \sum d_x \cdot \sum$ | $d_y$                  |                   |                  |                |  |  |
|           |                                                                                                | 2011.0                  |                                         | - 2 (-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              | $2 \left( - \right)^2$ |                   |                  |                |  |  |

Coff. of correlation  $r = \frac{N \sum d_x d_y - \sum d_x \sum d_y}{\sqrt{N \sum d_x^2 - (\sum d_x)^2} \sqrt{N \sum d_y^2 - (\sum d_y)^2}}$   $r = \frac{5 \times 19 - 0 \times (-3)}{\sqrt{5 \times 10 - (0)^2} \sqrt{5 \times 39 - (-3)^2}}$   $= \frac{95 - 0}{\sqrt{50 - 0} \sqrt{195 - 9}}$   $r = \frac{95}{\sqrt{50} \sqrt{186}}$  $= \frac{95}{\sqrt{9300}}$  Correlation

 $r = \frac{95}{96.44} = 0.985$ 

42. The coefficient of correlation between x and y is 0.5 the covariance, is 16, and the standard deviation of y is

(a) 4
(b) 8
(c) 16
(d) 64

(a) 4 Answer:

(**b**) Given Coeff. of correlation (r) = 0.5

(Covariance) Cov.(x,y) = 16 S.D. of x ( $\sigma$  x) = 4 S.D. of y ( $\sigma$  y) = ? Coeff. of Correlation r =  $\frac{Cov(x,y)}{\sigma x \cdot \sigma y}$  $0.5 = \frac{16}{4 \times \sigma y}$  $\sigma y = \frac{16}{4 \times 0.5}$  $\sigma y = \frac{16}{2}$  $\sigma y = 8$ 

- 43. If y = 9x and x = 0.01y then r is equal to (a) - 0.1 (b) 0.1 (c) + 0.3 (d) - 0.3 44. If the sum of the product of the deviations of X and X from their means is zero the correlation
- 44. If the sum of the product of the deviations of X and Y from their means is zero the correlation coefficient between X and Y is: July 2021
  (a) Zero
  (b) Positive
  (c) Negative
  (d) 10
- 45. If the data points of (X, Y) series on a scatter diagram lie along a straight line that goes downwards as X -values move from left to right, Then the data exhibit ...... correlation. Dec 2021

(a) Direct (b) Indirect (c) Indirect (d) Imperfect direct Answer: (c)



This is a Perfect Negative correlation, or indirect correlation.

46. If Coefficient of correlation for 3x + 4y = 6 is 0.5. Find the coefficient of correlation for of 3u + 9v = 7 for u and v. June 2022

(a) -(0.5) (b) +(0.5) (c)  $\pm 0.5$  (d) 0.25

**47.** Karl Pearson Correlation Coefficient method is used for – **June 2022** 

- (a) Any data(b) Scattered data(c) Grouped data(d) Ungrouped data48. If the plotted point in a scatter diagram lie from lower left to upper right then correction is: June 2022
  - (a) Positive (b) Negative (c) Perfectively negative (d) Zero
- **49.** If concurrent coefficient is  $\frac{1}{\sqrt{3}}$ . If sum deviation is 6 for n pairs of data? **June 2022** (a) 9 (b) 8 (c) 10 (d) 11

### Answer:

(c) Given 
$$r_c = \frac{1}{\sqrt{3}}$$
,  $n = ?$   
 $c = 6$   
Coeff of concurrent deviation  
 $r_c = \pm \sqrt{\frac{2c-m}{m}}$   
 $\frac{1}{\sqrt{3}} = \pm \sqrt{\frac{2\times 6-m}{m}}$   
On squaring Both side  
 $\left(\frac{1}{\sqrt{3}}\right)^2 = \left(\mp \sqrt{\frac{12-m}{m}}\right)^2$   
 $\frac{1}{3} = \frac{12-m}{m}$   
 $m = 36 - 3m$   
 $m + 3m = 36$   
 $4m = 36$   
 $m = \frac{36}{4} = 9$   
 $n = m + 1 = 9 + 1 = 10$ 

- **50.** Which of the following is used to find correlation between two qualitative characteristics **June 2022** 
  - (a) Karl Pearson

- (b) Spearman rank Correlation
- (c) Concurrent deviation
- (d) Scatter diagram
- **51.** Scattered diagram is used the plot **June 2022**

(a) Quantitative data
(b) Qualitative data
(c) Discrete data
(d) Continuous data

52. The coefficient of rank correlation between the ranking of following 6 students in two subjects mathematics and Statistics is: Dec 2022

| subjects mathema | uics and St | atistics is: | Dec 2022 | 4 |          |    |
|------------------|-------------|--------------|----------|---|----------|----|
| Mathematics      | 3           | 5            | 8        | 4 | 7        | 10 |
| Statistics       | 6           | 4            | 9        | 8 | 1        | 2  |
| (a) 0.25         | (b) (       | .35          | (c) 0.38 |   | (d) 0.20 |    |

Answer:

```
(a) MATHEMATICS \rightarrow X, STATISTICS \rightarrow Y
```

Table

| Marks of  | Rank of 'x'    | Marks of  | Rank of y                 | $\mathbf{d} = \mathbf{R}\mathbf{x} - \mathbf{R}\mathbf{y}$ | <b>d</b> <sup>2</sup> |
|-----------|----------------|-----------|---------------------------|------------------------------------------------------------|-----------------------|
| Maths (x) | R <sub>x</sub> | Stats (y) | ( <b>R</b> <sub>y</sub> ) |                                                            |                       |
| 3         | 6              | 6         | 3                         | 3                                                          | 9                     |
| 5         | 4              | 4         | 4                         | 0                                                          | 0                     |
| 8         | 2              | 9         | 1                         | 1                                                          | 1                     |
| 4         | 5              | 8         | 2                         | 3                                                          | 9                     |
| 7         | 3              | 1         | 6                         | -3                                                         | 9                     |
| 10        | 1              | 2         | 5                         | -4                                                         | 16                    |
| n = 6     |                |           | •                         |                                                            | $d^2 = 44$            |

Coeff. of rank correlation

$$r_{R} = 1 - \frac{6\sum d^{2}}{n(n^{2}-1)}$$
  
=  $1 - \frac{6\times 44}{6(6^{2}-1)}$   
=  $1 - \frac{6\times 44}{6\times 35}$   
=  $1 - \frac{44}{35}$   
=  $\frac{-9}{35}$   
 $r_{R} = -0.257$ 

 $r_R = -0.25$ 

53. Pearson's Correlation coefficient between x and y is:- Dec 2022

## Correlation

(a) 
$$\frac{cov(x,y)}{s_x s_y}$$
 (b)  $\frac{cov^2(x,y)}{s_x s_y}$  (c)  $\frac{(s_x s_y)^2}{cov(x,y)}$  (d)  $\frac{s_x s_y}{cov(x,y)}$   
54. Given that ₹=0.4 and n =81 determine the units for the population evaluation coefficient  
June 2023  
(a) (0.33, 0.466) (b) (0.367, 0.433) (c) (0.337, 0.463) (d) (0.373, 0.427)  
Answer :  
(c) Given R = 0.4 and n = 81  
Now P.E =  $\frac{2}{3} \left(\frac{1-R^2}{\sqrt{n}}\right) = \frac{2}{3} \left[\frac{1-(0.4)^2}{\sqrt{81}}\right]$   
 $= \frac{2}{3} \left(\frac{1-0.16}{\sqrt{9}}\right)$   
 $= \frac{2}{3} \left(\frac{1-0.16}{\sqrt{9}}\right)$   
 $= \frac{2}{3} \left(\frac{1-0.16}{\sqrt{9}}\right)$   
 $= \frac{2}{3} \left(\frac{1-0.16}{\sqrt{9}}\right)$   
 $= \frac{1.68}{27}$   
 $= 0.063$   
The limit of population of correlation coefficient  
 $= (r \pm P.E)$   
 $= [(r - P.E), (r + P.E)]$   
 $= [(0.4 - 0.063), 0.4 + 0.063]$   
 $= [0.337, 0.463]$   
55. Spearman rank correlation coefficient Y<sub>R</sub> I given by: June 2023  
(a)  $1 - \frac{6 \sum d1^2}{n(n^2+1)}$  (b)  $1 + \frac{6 \sum d1^2}{n(n^2-1)}$  (c)  $1 + \frac{6 \sum d1^2}{n(n^2+1)}$  (d)  $1 - \frac{6 \sum d1^2}{n(n^2-1)}$   
Answer:

**(b)** Coeff of Rank Correlation (r) =  $1 - \frac{6\sum d_1^2}{n(n^2-1)}$ 

|     | Allower Key |     |   |     |   |     |   |     |   |     |   |     |   |     |   |     |   |     |   |
|-----|-------------|-----|---|-----|---|-----|---|-----|---|-----|---|-----|---|-----|---|-----|---|-----|---|
| 1.  | а           | 2.  | b | 3.  | a | 4.  | с | 5.  | b | 6.  | a | 7.  | b | 8.  | a | 9.  | b | 10. | а |
| 11. | а           | 12. | с | 13. | a | 14. | a | 15. | a | 16. | b | 17. | b | 18. | с | 19. | b | 20. | b |
| 21. | b           | 22. | b | 23. | a | 24. | a | 25. | d | 26. | b | 27. | a | 28. | d | 29. | с | 30. | b |
| 31. | а           | 32. | b | 33. | с | 34. | b | 35. | a | 36. | a | 37. | с | 38. | a | 39. | d | 40. | d |
| 41. | d           | 42. | b | 43. | с | 44. | a | 45. | с | 46. | b | 47. | d | 48. | a | 49. | с | 50. | b |
| 51. | a           | 52. | a | 53. | a |     |   |     |   |     |   |     |   |     |   |     |   |     |   |

**Answer Key** 

# CHAPTER REGRESSION

# PAST YEAR QUESTIONS

| 1.         | For some bivariate dat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ta, the following result                                                                                                                                                                       | s were obtained for the                                                                                                                                                                                            | e two variables x and y : $\bar{x}$                                                                                     |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
|            | $= 53.2, y = 27.9, b_{yx} = 2006$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $= -1.5, b_{xy} = -0.2$ . The i                                                                                                                                                                | nost probable value of                                                                                                                                                                                             | y when $x = 60$ is : Nov-                                                                                               |
|            | (a)15.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (b) 13 4                                                                                                                                                                                       | (c) 197                                                                                                                                                                                                            | (d) 17 7                                                                                                                |
| 2.         | The lines of regression                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n are as follows : 5x -                                                                                                                                                                        | 145 = -10v : 14v - 20                                                                                                                                                                                              | 08 = -8x. The mean values                                                                                               |
|            | $\bar{x}, \bar{y}$ is: Nov-2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                | - J_, J                                                                                                                                                                                                            |                                                                                                                         |
|            | (a) (12, 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (b) (5, 7)                                                                                                                                                                                     | (c) (7, 12)                                                                                                                                                                                                        | (d) (5, 12)                                                                                                             |
| 3.         | Given the following d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lata : $b_{xy} = 0.4 \& b_{yx}$                                                                                                                                                                | = 1.6. The coefficient                                                                                                                                                                                             | of determination is : Feb-                                                                                              |
|            | 2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                |                                                                                                                                                                                                                    |                                                                                                                         |
|            | (a) 0.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (b) 0.42                                                                                                                                                                                       | (c) 0.58                                                                                                                                                                                                           | (d) 0.64                                                                                                                |
| 4.         | The method applied for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | or deriving regression e                                                                                                                                                                       | equations is known as :                                                                                                                                                                                            | Feb-2008                                                                                                                |
| _          | (a) Concurrent deviation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | on (b) Product momen                                                                                                                                                                           | t (c) Least squares                                                                                                                                                                                                | (d) Normal equation                                                                                                     |
| 5.         | If the lines of regressi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | on in a bivariate distri                                                                                                                                                                       | bution are given by x                                                                                                                                                                                              | +2y = 5 and $2x + 3y = 8$ ,                                                                                             |
|            | then the coefficient of $(a) 0.866$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (b) 0.666                                                                                                                                                                                      | (a) 0.667                                                                                                                                                                                                          | (d) 0.866                                                                                                               |
| 6          | (a) 0.000<br>If the correlation coef                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (0) - 0.000<br>ficient between two ve                                                                                                                                                          | (C) 0.007                                                                                                                                                                                                          | (u) - 0.000                                                                                                             |
| 0.         | Feb-2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                |                                                                                                                                                                                                                    | wo miles of regressions are                                                                                             |
|            | (a) Parallel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (b) At right angles                                                                                                                                                                            | (c) Coincident                                                                                                                                                                                                     | (d) None of these                                                                                                       |
| 7.         | Given the regression e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | equations as $3x + y = 1$                                                                                                                                                                      | 3 and $2x + 5y = 20$ . Fin                                                                                                                                                                                         | nd regression equation of y                                                                                             |
|            | on x.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                |                                                                                                                                                                                                                    | Dec-2008                                                                                                                |
|            | (a) $3x + y = 13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (b) $2x + y = 20$                                                                                                                                                                              | (c) $3x + 5y = 13$                                                                                                                                                                                                 | (d) $2x + 5 y = 20$                                                                                                     |
| 8.         | The coefficient of co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | rrelation is significant                                                                                                                                                                       | if:                                                                                                                                                                                                                | Dec-2008                                                                                                                |
| 0          | (a) $r > 5P.E$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (b) $r < 6$ P.E.                                                                                                                                                                               | (c) $r > 6P.E$                                                                                                                                                                                                     | (d) $r = 6P.E$                                                                                                          |
| 9.         | The two regression eq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =                                                                                                                                                        | + 18 = 0, x + 2y - 25 = 0 1                                                                                                                                                                                        | and the value of y if $x = 9$                                                                                           |
|            | June-2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                |                                                                                                                                                                                                                    |                                                                                                                         |
|            | (a) - 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (b) 8                                                                                                                                                                                          | (c) - 12                                                                                                                                                                                                           | 0 (b)                                                                                                                   |
| 10.        | (a) $-8$<br>The correlation coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (b) 8<br>cient between x and y i                                                                                                                                                               | (c) $-12$<br>s $-1/2$ . The value of <sup>b</sup> x                                                                                                                                                                | (d) 0<br>v = -1/8. Find by x. <b>June</b> -                                                                             |
| 10.        | (a) -8<br>The correlation coeffic<br><b>2009</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (b) 8<br>cient between x and y i                                                                                                                                                               | (c) $-12$<br>s $-1/2$ . The value of <sup>b</sup> xy                                                                                                                                                               | (d) 0<br>y = -1/8. Find by x. <b>June</b> -                                                                             |
| 10.        | (a) -8<br>The correlation coeffic<br><b>2009</b><br>(a) -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (b) 8<br>cient between x and y i<br>(b) -4                                                                                                                                                     | (c) $- 12$<br>s $-1/2$ . The value of <sup>b</sup> xy<br>(c) 0                                                                                                                                                     | (d) 0<br>y = -1/8. Find by x. <b>June</b> -<br>(d) 2                                                                    |
| 10.<br>11. | <ul> <li>(a) -8</li> <li>The correlation coefficient</li> <li>2009</li> <li>(a) -2</li> <li>Which of the following</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                  | (b) 8<br>cient between x and y i<br>(b) -4<br>g regression equations                                                                                                                           | (c) $-12$<br>s $-1/2$ . The value of <sup>b</sup> xy<br>(c) 0<br>s represent regression 1                                                                                                                          | (d) 0<br>y = -1/8. Find by x. June-<br>(d) 2<br>ine of Y on X : 7x + 2y +                                               |
| 10.<br>11. | (a) $-8$<br>The correlation coeffice<br><b>2009</b><br>(a) $-2$<br>Which of the followint<br>$15 = 0, 2 \times +5y + 10 =$                                                                                                                                                                                                                                                                                                                                                                                                     | (b) 8<br>cient between x and y i<br>(b) -4<br>g regression equations<br>= 0                                                                                                                    | (c) $-12$<br>s $-1/2$ . The value of <sup>b</sup> xy<br>(c) 0<br>s represent regression 1                                                                                                                          | (d) 0<br>y = -1/8. Find by x. June-<br>(d) 2<br>ine of Y on X : 7x + 2y +<br>Dec-2009                                   |
| 10.<br>11. | (a) $-8$<br>The correlation coeffice<br><b>2009</b><br>(a) $-2$<br>Which of the followin<br>$15 = 0, 2 \times +5y + 10 =$<br>(a) $7x + 2y + 15 = 0$                                                                                                                                                                                                                                                                                                                                                                            | (b) 8<br>cient between x and y i<br>(b) $-4$<br>ig regression equations<br>= 0<br>(b) $2x + 5y + 10 = 0$                                                                                       | <ul> <li>(c) - 12</li> <li>s -1/2. The value of <sup>b</sup>xy</li> <li>(c) 0</li> <li>s represent regression 1</li> <li>(c) Both (a) and (b)</li> </ul>                                                           | (d) 0<br>y = -1/8. Find by x. June-<br>(d) 2<br>ine of Y on X : $7x + 2y +$<br>Dec-2009<br>(d) None of these            |
| 10.<br>11. | (a) $-8$<br>The correlation coeffice<br><b>2009</b><br>(a) $-2$<br>Which of the followin<br>15 = 0, 2 + 5y + 10 =<br>(a) $7x + 2y + 15 = 0$<br>Answer:<br>(b) $7x + 2y + 15 =$                                                                                                                                                                                                                                                                                                                                                 | (b) 8<br>cient between x and y i<br>(b) $-4$<br>g regression equations<br>= 0<br>(b) $2x + 5y + 10 = 0$                                                                                        | <ul> <li>(c) - 12</li> <li>(c) 0</li> <li>(c) 0</li> <li>(c) Both (a) and (b)</li> </ul>                                                                                                                           | (d) 0<br>y = -1/8. Find by x. June-<br>(d) 2<br>ine of Y on X : 7x + 2y +<br>Dec-2009<br>(d) None of these              |
| 10.<br>11. | (a) $-8$<br>The correlation coeffice<br><b>2009</b><br>(a) $-2$<br>Which of the followin<br>15 = 0, 2 + 5y + 10 =<br>(a) $7x + 2y + 15 = 0$<br><b>Answer:</b><br>(b) $7x + 2y + 15 =$<br>2x + 5y + 10 =                                                                                                                                                                                                                                                                                                                        | (b) 8<br>cient between x and y i<br>(b) $-4$<br>g regression equations<br>= 0<br>(b) $2x + 5y + 10 = 0$<br>0(1)<br>= 0(2)                                                                      | <ul> <li>(c) - 12</li> <li>s -1/2. The value of <sup>b</sup>xy</li> <li>(c) 0</li> <li>s represent regression 1</li> <li>(c) Both (a) and (b)</li> </ul>                                                           | (d) 0<br>y = -1/8. Find by x. June-<br>(d) 2<br>ine of Y on X :7x + 2y +<br>Dec-2009<br>(d) None of these               |
| 10.<br>11. | (a) -8<br>The correlation coeffice<br><b>2009</b><br>(a) -2<br>Which of the followin<br>15 = 0, 2x + 5y + 10 =<br>(a)7x + 2y + 15 = 0<br><b>Answer:</b><br>(b) 7x + 2y + 15 =<br>2x + 5y + 10 =<br>Assume that 7                                                                                                                                                                                                                                                                                                               | (b) 8<br>cient between x and y i<br>(b) -4<br>g regression equations<br>= 0<br>(b) $2x + 5y + 10 = 0$<br>0(1)<br>= 0(2)<br>x + 2y + 15 = 0 is the s                                            | <ul> <li>(c) - 12</li> <li>(c) 0</li> <li>(c) 0</li> <li>(c) Both (a) and (b)</li> </ul>                                                                                                                           | (d) 0<br>y = -1/8. Find by x. June-<br>(d) 2<br>ine of Y on X : 7x + 2y +<br>Dec-2009<br>(d) None of these              |
| 10.<br>11. | (a) -8<br>The correlation coeffic<br><b>2009</b><br>(a) -2<br>Which of the followin<br>15 = 0, 2 + 5y + 10 = 0<br>(a) $7x + 2y + 15 = 0$<br><b>Answer:</b><br>(b) $7x + 2y + 15 = 0$<br>2x + 5y + 10 = 0<br>Assume that $72x + 5y + 10 = 0$                                                                                                                                                                                                                                                                                    | (b) 8<br>cient between x and y i<br>(b) -4<br>og regression equations<br>= 0<br>(b) $2x + 5y + 10 = 0$<br>0(1)<br>= 0(2)<br>x + 2y + 15 = 0 is the s<br>0 is the regression line               | <ul> <li>(c) - 12</li> <li>s -1/2. The value of <sup>b</sup>xy</li> <li>(c) 0</li> <li>s represent regression 1</li> <li>(c) Both (a) and (b)</li> <li>regression line of X or</li> <li>e of Y and X.</li> </ul>   | (d) 0<br>y = -1/8. Find by x. June-<br>(d) 2<br>ine of Y on X :7x + 2y +<br>Dec-2009<br>(d) None of these               |
| 10.        | (a) -8<br>The correlation coeffic<br><b>2009</b><br>(a) -2<br>Which of the followin<br>15 = 0, 2 x + 5y + 10 =<br>(a) $7x + 2y + 15 = 0$<br><b>Answer:</b><br>(b) $7x + 2y + 15 =$<br>2x + 5y + 10 =<br>Assume that 7<br>2x + 5y + 10 =<br>7x + 2y + 15 =                                                                                                                                                                                                                                                                      | (b) 8<br>cient between x and y is<br>(b) $-4$<br>g regression equations<br>= 0<br>(b) $2x + 5y + 10 = 0$<br>0(1)<br>= 0(2)<br>x + 2y + 15 = 0 is the solution<br>0 is the regression line<br>0 | <ul> <li>(c) - 12</li> <li>s -1/2. The value of <sup>b</sup>xy</li> <li>(c) 0</li> <li>s represent regression 1</li> <li>(c) Both (a) and (b)</li> <li>regression line of X or</li> <li>e of Y and X.</li> </ul>   | (d) 0<br>y = -1/8. Find by x. June-<br>(d) 2<br>ine of Y on X : $7x + 2y +$<br>Dec-2009<br>(d) None of these<br>h Y and |
| 10.        | (a) -8<br>The correlation coeffic<br><b>2009</b><br>(a) -2<br>Which of the followin<br>15 = 0, 2 + 5y + 10 = 0<br>(a) $7x + 2y + 15 = 0$<br><b>Answer:</b><br>(b) $7x + 2y + 15 = 0$<br><b>Answer:</b><br>(b) $7x + 2y + 15 = 0$<br>2x + 5y + 10 = 0<br>7x + 2y + 15 = 0<br>2x + 5y + 10 = 0<br>7x + 2y + 15 = 0                           | (b) 8<br>cient between x and y is<br>(b) -4<br>og regression equations<br>= 0<br>(b) $2x + 5y + 10 = 0$<br>0(1)<br>= 0(2)<br>x + 2y + 15 = 0 is the s<br>0 is the regression line<br>0         | <ul> <li>(c) - 12</li> <li>s -1/2. The value of <sup>b</sup>xy</li> <li>(c) 0</li> <li>s represent regression 1</li> <li>(c) Both (a) and (b)</li> <li>regression line of X or</li> <li>e of Y and X.</li> </ul>   | (d) 0<br>y = -1/8. Find by x. June-<br>(d) 2<br>ine of Y on X :7x + 2y +<br>Dec-2009<br>(d) None of these<br>h Y and    |
| 10.        | (a) -8<br>The correlation coeffic<br><b>2009</b><br>(a) -2<br>Which of the followin<br>15 = 0, 2 x + 5y + 10 =<br>(a)7x + 2y + 15 = 0<br><b>Answer:</b><br>(b) 7x + 2y + 15 =<br>2x + 5y + 10 =<br>7x + 2y + 15 =<br>X = $\frac{-2y}{7} \frac{-15}{7}$<br>by $x = -\frac{2}{7}$                                                                                                                                                                                                                                                | (b) 8<br>cient between x and y i<br>(b) $-4$<br>g regression equations<br>= 0<br>(b) $2x + 5y + 10 = 0$<br>0(1)<br>= 0(2)<br>x + 2y + 15 = 0 is the<br>0 is the regression line<br>0           | <ul> <li>(c) - 12</li> <li>s -1/2. The value of <sup>b</sup>xy</li> <li>(c) 0</li> <li>s represent regression 1</li> <li>(c) Both (a) and (b)</li> <li>regression line of X or</li> <li>e of Y and X.</li> </ul>   | (d) 0<br>y = -1/8. Find by x. June-<br>(d) 2<br>ine of Y on X : $7x + 2y +$<br>Dec-2009<br>(d) None of these<br>h Y and |
| 10.        | (a) -8<br>The correlation coeffic<br><b>2009</b><br>(a) -2<br>Which of the followin<br>15 = 0, 2 x + 5y + 10 =<br>(a)7x + 2y + 15 = 0<br><b>Answer:</b><br>(b) 7x + 2y + 15 =<br>2x + 5y + 10 =<br>7x + 2y + 15 =<br>X = $\frac{-2y}{7} - \frac{-15}{7}$<br>$b_{xy} = -\frac{2}{7}$<br>2x + 5y + 10 =                                                                                                                                                                                                                          | (b) 8<br>cient between x and y i<br>(b) -4<br>og regression equations<br>= 0<br>(b) $2x + 5y + 10 = 0$<br>0(1)<br>= 0(2)<br>x + 2y + 15 = 0 is the i<br>0 is the regression line<br>0          | <ul> <li>(c) - 12</li> <li>s -1/2. The value of <sup>b</sup>xy</li> <li>(c) 0</li> <li>s represent regression 1</li> <li>(c) Both (a) and (b)</li> <li>regression line of X or</li> <li>e of Y and X.</li> </ul>   | (d) 0<br>y = -1/8. Find by x. June-<br>(d) 2<br>ine of Y on X : 7x + 2y +<br>Dec-2009<br>(d) None of these<br>h Y and   |
| 10.        | (a) -8<br>The correlation coeffic<br><b>2009</b><br>(a) -2<br>Which of the followin<br>15 = 0, 2 x + 5y + 10 =<br>(a)7x + 2y + 15 = 0<br><b>Answer:</b><br>(b) 7x + 2y + 15 =<br>2x + 5y + 10 =<br>7x + 2y + 15 =<br>X = $\frac{-2y}{7} \frac{-15}{7}$<br>b <sub>xy</sub> = $-\frac{2}{7}$<br>2x + 5y + 10 =<br>$X = \frac{-2y}{7} \frac{-15}{7}$                                                                                                                                                                              | (b) 8<br>cient between x and y i<br>(b) -4<br>g regression equations<br>= 0<br>(b) $2x + 5y + 10 = 0$<br>0(1)<br>= 0(2)<br>x + 2y + 15 = 0 is the<br>0 is the regression line<br>0             | <ul> <li>(c) - 12</li> <li>s -1/2. The value of <sup>b</sup>xy</li> <li>(c) 0</li> <li>s represent regression 1</li> <li>(c) Both (a) and (b)</li> <li>regression line of X or</li> <li>e of Y and X.</li> </ul>   | (d) 0<br>y = -1/8. Find by x. June-<br>(d) 2<br>ine of Y on X : $7x + 2y +$<br>Dec-2009<br>(d) None of these<br>h Y and |
| 10.        | (a) -8<br>The correlation coeffic<br><b>2009</b><br>(a) -2<br>Which of the followin<br>15 = 0, 2 x + 5y + 10 =<br>(a)7x + 2y + 15 = 0<br><b>Answer:</b><br>(b) 7x + 2y + 15 =<br>2x + 5y + 10 =<br>7x + 2y + 15 =<br>X = $\frac{-2y}{7} - \frac{15}{7}$<br>b <sub>xy</sub> = $-\frac{2}{7}$<br>2x + 5y + 10 =<br>Y = $-\frac{2x}{5} - \frac{10}{5}$                                                                                                                                                                            | (b) 8<br>cient between x and y i<br>(b) -4<br>og regression equations<br>= 0<br>(b) $2x + 5y + 10 = 0$<br>0(1)<br>= 0(2)<br>x + 2y + 15 = 0 is the i<br>0 is the regression line<br>0          | <ul> <li>(c) - 12</li> <li>s -1/2. The value of <sup>b</sup>xy</li> <li>(c) 0</li> <li>s represent regression 1</li> <li>(c) Both (a) and (b)</li> <li>regression line of X or</li> <li>e of Y and X.</li> </ul>   | (d) 0<br>y = -1/8. Find by x. June-<br>(d) 2<br>ine of Y on X :7x + 2y +<br>Dec-2009<br>(d) None of these<br>h Y and    |
| 10.        | (a) -8<br>The correlation coeffic<br><b>2009</b><br>(a) -2<br>Which of the followin<br>15 = 0, 2 x + 5y + 10 =<br>(a)7x + 2y + 15 = 0<br><b>Answer:</b><br>(b) 7x + 2y + 15 =<br>2x + 5y + 10 =<br>7x + 2y + 15 =<br>X = $\frac{-2y}{7} \frac{-15}{7}$<br>b <sub>xy</sub> = $-\frac{2}{7}$<br>2x + 5y + 10 =<br>Y = $-\frac{2x}{7} \frac{-15}{7}$<br>b <sub>xy</sub> = $-\frac{2}{7}$<br>b <sub>xy</sub> = $-\frac{2}{5}$                                                                                                      | (b) 8<br>cient between x and y i<br>(b) $-4$<br>g regression equations<br>= 0<br>(b) $2x + 5y + 10 = 0$<br>0(1)<br>= 0(2)<br>x + 2y + 15 = 0 is the<br>0 is the regression line<br>0           | <ul> <li>(c) - 12</li> <li>s -1/2. The value of <sup>b</sup>xy</li> <li>(c) 0</li> <li>s represent regression 1</li> <li>(c) Both (a) and (b)</li> <li>regression line of X or</li> <li>e of Y and X.</li> </ul>   | (d) 0<br>y = -1/8. Find by x. June-<br>(d) 2<br>ine of Y on X : $7x + 2y +$<br>Dec-2009<br>(d) None of these<br>h Y and |
| 10.        | (a) -8<br>The correlation coeffic<br><b>2009</b><br>(a) -2<br>Which of the followin<br>15 = 0, 2 x + 5y + 10 =<br>(a)7x + 2y + 15 = 0<br><b>Answer:</b><br>(b) 7x + 2y + 15 =<br>2x + 5y + 10 =<br>7x + 2y + 15 =<br>X = $\frac{-2y}{7} - \frac{-15}{7}$<br>$b_{xy} = -\frac{2}{7}$<br>2x + 5y + 10 =<br>$Y = -\frac{2x}{7} - \frac{10}{5}$<br>$b_{yx} = -\frac{2}{5}$<br>$r^{2} = b_{xy} \times b_{yx}$                                                                                                                       | (b) 8<br>cient between x and y i<br>(b) -4<br>og regression equations<br>= 0<br>(b) $2x + 5y + 10 = 0$<br>0(1)<br>= 0(2)<br>x + 2y + 15 = 0 is the i<br>0 is the regression line<br>0          | <ul> <li>(c) - 12</li> <li>s -1/2. The value of <sup>b</sup>xy</li> <li>(c) 0</li> <li>s represent regression 1</li> <li>(c) Both (a) and (b)</li> <li>regression line of X or</li> <li>e of Y and X.</li> </ul>   | (d) 0<br>y = -1/8. Find by x. June-<br>(d) 2<br>ine of Y on X :7x + 2y +<br>Dec-2009<br>(d) None of these<br>h Y and    |
| 10.        | (a) -8<br>The correlation coeffic<br><b>2009</b><br>(a) -2<br>Which of the followin<br>15 = 0, 2 x + 5y + 10 =<br>(a)7x + 2y + 15 = 0<br><b>Answer:</b><br>(b) 7x + 2y + 15 =<br>2x + 5y + 10 =<br>7x + 2y + 15 =<br>X = $\frac{-2y}{7} \frac{-15}{7}$<br>$b_{xy} = -\frac{2}{7}$<br>2x + 5y + 10 =<br>$Y = -\frac{2x}{7} \frac{-15}{7}$<br>$b_{xy} = -\frac{2}{7}$<br>2x + 5y + 10 =<br>$Y = -\frac{2x}{5} - \frac{10}{5}$<br>$b_{yx} = -\frac{2}{5}$<br>$r^2 = b_{xy} \times b_{yx}$<br>$= -\frac{2}{7} \times -\frac{2}{5}$ | (b) 8<br>cient between x and y i<br>(b) $-4$<br>g regression equations<br>= 0<br>(b) $2x + 5y + 10 = 0$<br>0(1)<br>= 0(2)<br>x + 2y + 15 = 0 is the<br>0 is the regression line<br>0           | <ul> <li>(c) - 12</li> <li>s -1/2. The value of <sup>b</sup>xy</li> <li>(c) 0</li> <li>s represent regression 1</li> <li>(c) Both (a) and (b)</li> </ul> regression line of X or <ul> <li>e of Y and X.</li> </ul> | (d) 0<br>y = -1/8. Find by x. June-<br>(d) 2<br>ine of Y on X : $7x + 2y +$<br>Dec-2009<br>(d) None of these<br>h Y and |
| 10.        | (a) -8<br>The correlation coeffic<br>2009<br>(a) -2<br>Which of the followin<br>15 = 0, 2 x + 5y + 10 =<br>(a)7x + 2y + 15 = 0<br>Answer:<br>(b) 7x + 2y + 15 =<br>2x + 5y + 10 =<br>7x + 2y + 15 =<br>X = $\frac{-2y}{7} - \frac{15}{7}$<br>$b_{xy} = -\frac{2}{7}$<br>2x + 5y + 10 =<br>$Y = -\frac{2x}{7} - \frac{15}{7}$<br>$b_{xy} = -\frac{2}{7}$<br>2x + 5y + 10 =<br>$Y = -\frac{2x}{5} - \frac{10}{5}$<br>$b_{yx} = -\frac{2}{5}$<br>$r^2 = b_{xy} \times b_{yx}$<br>$= -\frac{2}{7} \times -\frac{2}{5}$             | (b) 8<br>cient between x and y i<br>(b) $-4$<br>og regression equations<br>= 0<br>(b) $2x + 5y + 10 = 0$<br>0(1)<br>= 0(2)<br>x + 2y + 15 = 0 is the i<br>0 is the regression line<br>0        | (c) $-12$<br>s $-1/2$ . The value of <sup>b</sup> xy<br>(c) 0<br>s represent regression 1<br>(c) Both (a) and (b)<br>regression line of X or<br>e of Y and X.                                                      | (d) 0<br>y = -1/8. Find by x. June-<br>(d) 2<br>ine of Y on X :7x + 2y +<br>Dec-2009<br>(d) None of these<br>h Y and    |

r = -0.33

Since  $-1 \le r \le 1$  : our assumption is correct So, 2x + 5y + 10 = 0 is the regression line Y on X.

12. The two regression lines are 7 x - 3 y - 18 = 0 and 4x - y - 11 = 0. Find the values of  $b_{yx}$ and  $b_{xy}$ (a) 7/3,1/4 (b) -7/3, -1/4 (c) -3/7, -1/4 (d) None of these.

Answer:

(a) Assume that 7x - 3y - 18 = 0 is the line

7x - 3y - 18 = 0 of Y on X and 4x - y - 11 = 0 is X on Y. 3y = 7x - 18  $y = \frac{7x}{3} - \frac{18}{3}$   $b_{yx} = \frac{7}{3}$  4x - y - 11 = 0 4x = y + 11  $x = \frac{y}{4} + \frac{11}{4}$   $b_{xy} = \frac{1}{4}$   $r^{2} = b_{xy} \times b_{yx}$   $r = \sqrt{\frac{1}{4}} \times \frac{7}{3}$   $r = \sqrt{\frac{7}{12}} = 0.764$ 

since value of r is lying between -1 and 1 therefore our assumption was correct. So,  $b_{yx} = \frac{7}{2}$  and  $b_{xy} = \frac{1}{4}$ 

13. \_\_\_\_\_ of the regression Coefficients is greater than the correlation coefficient June-2010

 (a) Combined mean
 (b) Harmonic mean
 (c) Geometric mean
 (d) Arithmetic mean.

 Answer:

(d) Correlation Coefficient (r) is the Geometric Mean (G.M.) between two co regression coefficients.

 $r = \pm \sqrt{b_{xy} \cdot b_{yx}}$ Since, AM > GM > HM

Therefore, AM of regression coefficients is greater than correlation coefficient.

14. If 2 regression lines are x + 2y = 5 and 2x + 3y-8 = 0. The regression line of y on xJune-2010 (a) x + 2y-5 = 0 (b) 2x + 3y-8 = 0 (c) Any of the two lines (d) of the two lines Answer:

(c) Let us take equation (1) as

$$x + 2y - 5 = 0$$
  
by 
$$x = \frac{\text{coeff. of } x}{\text{coeff. of } y} = \frac{-1}{2} = -0.5$$

Now, let us take equation (2) as

$$2x + 3y - 8 = 0$$
  
by  $x = -\frac{2}{3} = -0.66$ 

In both the cases r < 1

Hence, any of the two lines can be regression line of y on x.

**15.** Regression coefficient are

**Dec-2010** 

- (a) Dependent of origin and of scale(b) Independent of both change of origin and of scale.
- (c) Dependent of change of origin but not of scale.
- (d) Independent of change of origin but not of scale.

| 16. | Given: $\bar{x} = 16, \sigma x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $x = 4.8, \ \bar{y} = 20, \sigma x = 9$  | .6, <b>Dec-2010</b> The coef                   | ficient of correlation between   |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------|----------------------------------|
|     | x and y is 0.6. Wh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | at will be the regression                | coefficient of 'x' on '                        | y'?                              |
|     | (a) 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (b) 0.3                                  | (c) $0.2$                                      | (d) 0.05                         |
|     | Answer:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SDx                                      |                                                |                                  |
|     | <b>(b)</b> bxy = $r \times \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SDy                                      |                                                |                                  |
|     | r = 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                        |                                                |                                  |
|     | SDx = 4.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |                                                |                                  |
|     | SDy = 9.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |                                                |                                  |
|     | bxy = 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\times \frac{4.8}{9.6} = 0.3$           |                                                |                                  |
| 17. | For a bivariable da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ata, two lines of regressi               | on are $40x - 18y = 21$                        | 14  and  8x - 10y + 66 = 0, then |
|     | find the values of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\bar{x}$ and $\bar{y}$                  |                                                | June-2011                        |
|     | (a) 17 and 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (b) 13 and 17                            | (c) 13 and -17                                 | (d) -13 and 17                   |
|     | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |                                                |                                  |
|     | <b>(b)</b> Given : 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | x - 18y = 214                            | (1)                                            |                                  |
|     | 8x – 10y =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | = -66(2)                                 |                                                |                                  |
|     | On solvin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | g $(1)$ and $(2)$ we get                 |                                                |                                  |
|     | x = 13 a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | and $y = 17$                             |                                                |                                  |
| 10  | $\therefore x = 13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | and $y = 17$                             |                                                | D 2011                           |
| 10. | a) Change of Orig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ing which one affects the                | b) Change of seal                              | a Only                           |
|     | a) Change of scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lli Olliy                                | b) Change of scal                              | le Olly                          |
|     | d) Neither Change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | of origin nor change of                  | scale                                          |                                  |
| 19. | For a bivariate dat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ta, the lines of regression              | of Y on X. and of X                            | X on Y are respectively 2.5Y –   |
|     | X = 35 and $10X -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Y = 70, then the Correla                 | tion coefficient r is e                        | qual to: Dec-2011                |
|     | a) 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | b) – 0.2                                 | c) 0.5                                         | d) - 0.5                         |
|     | Answer:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |                                                |                                  |
|     | (a) The equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ion of regression line y o               | n x is given by                                |                                  |
|     | 2.5y - x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | = 35                                     |                                                |                                  |
|     | 2.5y = 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | + X                                      |                                                |                                  |
|     | $y = \frac{x+x}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                                        |                                                |                                  |
|     | $\mathbf{v} = \frac{x}{x}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $+\frac{350}{}$                          |                                                |                                  |
|     | 2.5<br>x - 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25<br>2                                  |                                                |                                  |
|     | y = 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $+\frac{-}{5}$                           |                                                |                                  |
|     | On com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | iparing                                  |                                                |                                  |
|     | У                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | = a + bx                                 |                                                |                                  |
|     | we get b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $b = \frac{1}{5} \Longrightarrow b_{yx}$ |                                                |                                  |
|     | Now th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e equation of Regression                 | line x on y in given b                         | ру                               |
|     | 10x - 10x | y = 70                                   |                                                |                                  |
|     | 10x =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 70 + y<br>70 + y                         |                                                |                                  |
|     | $\mathbf{x} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                                       |                                                |                                  |
|     | x =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $7 + \frac{1}{10}y$                      |                                                |                                  |
|     | Comp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | aring from $x = a + by$                  |                                                |                                  |
|     | we ge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $t b = \frac{1}{-} \Rightarrow bxv$      |                                                |                                  |
|     | eeeff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10 $(r) = 10$                            | have been                                      |                                  |
|     | coeffi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | clefit of correlation $(r) =$            | $\sqrt{Dxy \times Dyx}$                        |                                  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | =                                        | $\left \frac{2}{5} \times \frac{1}{10}\right $ |                                  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          | $\sqrt{\frac{1}{1}}$                           |                                  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | =                                        | $\sqrt{\frac{1}{25}}$                          |                                  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                        | <u>1</u>                                       |                                  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                        | 5                                              |                                  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | =                                        | 0.2                                            |                                  |

| Regressi | on                                                                                                                                                                                                                                   | 36.4                                                                                                       | GOPAL BHOOT                                                                   |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| 20.      | One of the regression coefficient is<br>a) More than, more than<br>c) More than, less than                                                                                                                                           | <ul> <li>unity, other must be</li> <li>b) Less than, less that</li> <li>d) Positive, Negative</li> </ul>   | unity. <b>Dec-2011</b><br>n                                                   |
| 21.      | If Y is dependent variable and X is Inderespectively and Co-efficient of co-rel coefficient of y on X.                                                                                                                               | ependent variable and the S<br>lation between X and Y is                                                   | D. of X and Y are 5 and 8<br>0.8. Find the Regression<br>Dec-2011             |
|          | a) 0.78 b) 1.28 <b>Answer:</b>                                                                                                                                                                                                       | c) 6.8                                                                                                     | d) 0.32                                                                       |
|          | (b) Given<br>S.D. of $x(\sigma_x) = 5$<br>S.D. of $y(\sigma_y) = 8$<br>Co-eff. of Correlation (r) = 0.<br>Regression Co-eff of y on x<br>$b_{yx} = r \cdot \frac{\sigma_y}{\sigma_x} = \frac{0.8 \times 8}{5} = \frac{6.4}{5} = 1.2$ | .8<br>28                                                                                                   |                                                                               |
| 22.      | The coefficient of correlation between regression coefficients.<br>(a) Arithmetic Mean (b) Geometric M                                                                                                                               | two variable x and y is the<br>Mean (c) Harmonic Mean                                                      | simple of the two<br>June-2012<br>(d) None of the above.                      |
| 23.      | If 2 variables are uncorrelated, their regi<br>(a) Parallel<br>(c) Coincident                                                                                                                                                        | ression lines are:<br>(b) Perpendicular<br>(d) Inclined at 45 deg                                          | June-2012 grees.                                                              |
| 24.      | If $\vec{x}, \vec{y}$ denote the arithmetic means, $\sigma_{x}$                                                                                                                                                                      | $\sigma_{x}, \sigma_{y}$ denotes the standard                                                              | deviations. $b_{xy}$ , $b_{yx}$ denote                                        |
|          | the regression coefficients of the var<br>intersection of regression lines x on y &<br>a) $(\bar{x}, \bar{y})$ b) $(\sigma, \sigma)$                                                                                                 | riables 'x' and 'y' respect<br>y on x is                                                                   | tively, then the point of <b>June-2012</b><br>(d) $(\sigma^2, \sigma^2)$      |
| 25.      | If $y = 18x + 5$ is the regression line of y<br>(a) $5/18$ (b) 18<br>Answer:<br>(d) If<br>If $y = 18x + 5$<br>18x = -5 + y<br>$x = \frac{-5 + y}{18}$<br>$x = \frac{-5}{18} + \frac{1}{18}y$<br>x = a + by                           | on x value of b <sub>xy</sub> is<br>(c) .5                                                                 | (d) (0 <sub>x</sub> , 0 <sub>y</sub> )<br>Dec-2012<br>(d) 1/18                |
| 26.      | We get $b = b_{xy} = 1/18$<br>If 'r' be the Karl Pearson's coefficient<br>regression lines are at right angle if:                                                                                                                    | of correlation in a bivariat                                                                               | e distribution then the two                                                   |
| 27       | a) $r = \pm 1$<br>c) $r = \pm$ any finite value whose numerical When the value of correlation is $\pm 1$ or                                                                                                                          | b) $r = 0$<br>al value is less than 1                                                                      | d) None of these                                                              |
| 21.      | (a) have 30° angle between them<br>(c) coincide                                                                                                                                                                                      | (b) have angle betwo<br>(d) be perpendicular                                                               | een them<br>to each other.                                                    |
| 28.      | If the mean of two variables 'x' & 'y'<br>regression lines are<br>a) $5x + 7y - 22 = 0$ , $6x + 2y - 20 = 0$<br>c) $5x + 7y + 22 = 0$ , $6x + 2y - 20 = 0$                                                                           | (d) be perpendicular<br>' are 3 and 1 respectively.<br>b) $5x + 7y -22 = 0$ , 6<br>d) $5x + 7y + 22 = 0$ , | Then the equation of two<br>June-2014<br>5x + 2y + 20 = 0<br>6x + 2y + 20 = 0 |
|          | (a) The equation of two Regression<br>5x + 7y - 22 = 0, $6x + 2y - 20 = 0by solving these equations we getx = 3$ & $y = 1$                                                                                                           | lines are<br>=0<br>get.                                                                                    |                                                                               |

**Dec-2015** 

So  $\bar{x} = 3$ , &  $\bar{y} = 1$ 

(The Intersection of two regression lines are  $\bar{x}, \bar{y}$ ).

- **29.** If the correlation between two variables is zero, then the lines of regression are:Dec-2014a) Parallelb) Perpendicularc) Coincided) None of these
- **30.** The equations of two regression lines are x + y = 6 and x + 2y = 10, then the value of correlation coefficient between x and y is : **Dec-2014**

a) 
$$-1/2$$
 b)  $+1/2$  c)  $-1/\sqrt{2}$  d)  $+1/\sqrt{2}$ 

Answer:

(c) Given two Regression lines:

$$x + y = 6 \quad \text{and} \quad x + 2y = 10$$
  

$$x + y - 6 = 0 \quad x + 2y - 10 = 0$$
  

$$b_{xy} = \frac{-Coeff.of y}{Coeff.of x} \quad b_{yx} = \frac{-Coeff.of x}{Coeff.pf y}$$
  

$$= \frac{-1}{1} = -1 \quad = \frac{-1}{2}$$
  

$$r = \pm \sqrt{b_{xy}} \times b_{yx} = \pm \sqrt{(-1)\left(\frac{-1}{2}\right)} = -\frac{1}{\sqrt{2}}$$

**31.** Out of following which is correct?

a) 
$$b_{yx} = r \frac{\sigma_x}{\sigma_y}$$
 b)  $b_{yx} = r \frac{\sigma_y}{\sigma_x}$  c)  $b_{yx} = \frac{\pi \cdot \sum xy}{\sigma_x}$  d)  $b_{yx} = \frac{\pi \cdot \sum xy}{\sigma_y}$ 

Answer:

(b) by  $x = \frac{r \cdot \sigma_y}{\sigma_x}$ 

Where  $\sigma_y = S.D.$  of  $y, \sigma_x = S.D.$  of x r = Coeff. of Correlation

**32.** Two regression equations are Regression equation of x on y: 5x - y = 22 **June-2016** Regression equation of y on x : 64x - 45y = 24 What will be the mean of x and y?

| a) $x = 8$ , | y = 6 | <b>b</b> ) $x = 6$ , | y = 6 | c) $x = 6$ , | y = 8 | d) $x = 8$ , | y = 8 |
|--------------|-------|----------------------|-------|--------------|-------|--------------|-------|
|              |       |                      |       |              |       |              |       |

### nswer:

|     | (c) Given R            | Regression Equations          |                   |                               |    |
|-----|------------------------|-------------------------------|-------------------|-------------------------------|----|
|     | 52                     | x - y = 22                    |                   | (1)                           |    |
|     | 64                     | x - 45y = 24                  |                   | (2)                           |    |
|     | Multiply               | by 45 in equation (1) we      | get               |                               |    |
|     | 225                    | x - 45y = 990                 |                   | (3)                           |    |
|     | equation               | (3) – equation $(2)$          |                   |                               |    |
|     | 225x                   | -45y = 990                    |                   |                               |    |
|     | 64x -                  | -45y = 24                     |                   |                               |    |
|     |                        | ·                             |                   |                               |    |
|     | 161x                   | = 966                         |                   |                               |    |
|     | X                      | = 6                           |                   |                               |    |
|     | Putting x              | = 6 in equation (1)           |                   |                               |    |
|     | $5 \times 6$           | 5 - y = 22                    |                   |                               |    |
|     | 30                     | -y = 22                       |                   |                               |    |
|     | У                      | v = 8                         |                   |                               |    |
|     | $\overline{x} = x = 6$ |                               |                   |                               |    |
|     | $\overline{y} = y = 8$ |                               |                   |                               |    |
| 33. | If the coefficie       | ent of correlation between    | X and Y variables | is +0.90 then what will be th | ie |
|     | coefficient of d       | etermination?                 |                   | June-201                      | 6  |
|     | a) 0.30                | b) 0.81                       | c) 0.94           | d) None of these              |    |
|     | Answer:                |                               |                   |                               |    |
|     | (b) If Co              | eff. of Correlation $(r) = 0$ | 0.90              |                               |    |
|     | Co                     | eff. of Determination = r     | .2                |                               |    |
|     |                        | = (1                          | $(0.90)^2$        |                               |    |
|     |                        | = 0                           | 0.81              |                               |    |
| 34. | The two lines of       | of regression become ident    | ical when         | June-201                      | 6  |
|     |                        |                               |                   |                               |    |

| Regression |                                      |                                         |                                   | GOPAL BHOOT          |                 |  |
|------------|--------------------------------------|-----------------------------------------|-----------------------------------|----------------------|-----------------|--|
|            | a) r = 1<br><b>Answer</b> :          | b) r = -1                               | c) $r = 0$                        | d) (a) r (b)         |                 |  |
|            | (d) If $r = -$                       | 1 or $+1$ then two lines of             | Regression become i               | dentical.            |                 |  |
| 35.        | If $r = 0.6$ , then t                | the coefficient of determi              | nation is .                       |                      | June-2016       |  |
|            | a) 0.4                               | b) – 0.6                                | c) 0.36                           | d) 0.64              |                 |  |
|            | Answer:                              |                                         |                                   |                      |                 |  |
|            | (c) If $r = 0$                       | ).6                                     | 2                                 |                      |                 |  |
|            | Then C                               | oeff. of determination $=$              | $r^2$                             |                      |                 |  |
|            |                                      | =                                       | $(0.6)^2$                         |                      |                 |  |
| 36         | The two regress                      | -<br>sion lines passing through         | 0.30<br>h                         |                      | Dec-2016        |  |
| 201        | (a) Respective r                     | neans (b) Respective S                  | S.Ds (c) Both                     | (d)None of           | these           |  |
| 37.        | Out of the follo                     | wing the one which effect               | cts the regression coef           | ficient is           | Dec-2016        |  |
|            | (a) Change of o                      | rigin only                              | (b) Change of s                   | scale only           |                 |  |
|            | (c) Change of s                      | cale and origin both                    | (d)Neither char                   | nge in origin nor cl | nange of scale  |  |
| 38.        | The regression                       | equation x and y is $3x + 2$            | 2y = 100, the value of            | bxy                  | Dec-2016        |  |
|            | (a) -2/3                             | (b) 100/3                               | (c) 3/2                           | (d) 2/3              |                 |  |
|            | Answer:                              |                                         |                                   |                      |                 |  |
|            | (a) The reg                          | ression equation of x on                | y is $3x + 2y = 100$ .            |                      |                 |  |
|            | The sta                              | ndard equation of x on y                | is of the form $x = a + 100$      | b <sub>xy</sub> y    |                 |  |
|            | We hav                               | $e 3x = 100 - 2y \implies x =$          | $\frac{100}{3} - \frac{2}{3}$ y   |                      |                 |  |
|            | Compa                                | ring this with the standar              | d form, we have b <sub>xy</sub> = | $=-\frac{2}{2}$      |                 |  |
| 39.        | If the two regre                     | ession lines are $5y = 9x$ -            | 22 and 20 $x = 9y + 3$            | 350, then the value  | of correlation  |  |
|            | coefficient (r) w                    | vill be                                 |                                   |                      | <b>Dec-2017</b> |  |
|            | a. 0.10                              | b0.10                                   | c 0.90                            | d. 0.90              |                 |  |
|            | Answer:                              |                                         |                                   |                      |                 |  |
|            | (d) Given two r                      | egression lines are                     |                                   |                      |                 |  |
|            | 5y = 9x - 2                          | 2 = (1)                                 |                                   |                      |                 |  |
|            | 9x - 5y - 2                          | z = 0                                   |                                   |                      |                 |  |
|            | by $x = \frac{-co}{co}$              | $\frac{11.01 x}{1.01 x} = \frac{-9}{5}$ |                                   |                      |                 |  |
|            | coe                                  | II. 0I Y -5                             |                                   |                      |                 |  |
|            | byx $=\frac{9}{5}$                   |                                         |                                   |                      |                 |  |
|            | 5                                    | 1                                       |                                   |                      |                 |  |
|            | $r = \pm \sqrt{byx}$                 | хбху                                    |                                   |                      |                 |  |
|            | and $20x = 9$                        | 9v + 350                                | (2)                               |                      |                 |  |
|            | and $20x - 9$                        | $\partial v - 350 = 0$                  |                                   |                      |                 |  |
|            |                                      | – coeff. of y                           |                                   |                      |                 |  |
|            | and $bxy = -$                        | $\frac{x}{coeff. of x}$                 |                                   |                      |                 |  |
|            | , -(-9                               | 9) 9                                    |                                   |                      |                 |  |
|            | bxy = -20                            | $-=\frac{1}{20}$                        |                                   |                      |                 |  |
|            | ·                                    |                                         |                                   |                      |                 |  |
|            | $= + \frac{9}{2} \times \frac{9}{2}$ |                                         |                                   |                      |                 |  |
|            | $-1\sqrt{5}$ 20                      |                                         |                                   |                      |                 |  |
|            | 81                                   |                                         |                                   |                      |                 |  |
|            | $=\pm \sqrt{\frac{100}{100}}$        |                                         |                                   |                      |                 |  |
|            | (9)                                  |                                         |                                   |                      |                 |  |
|            | $=+\left(\frac{10}{10}\right)=+0$    | 1.90                                    |                                   |                      |                 |  |
| 40         |                                      |                                         | 11 1 0 1                          |                      | 16 0010         |  |

**40.** The coefficient of determination is defined by the formula (a)  $r^2 = \frac{1-unexplained \ variance}{total \ variance}$  (b)  $r^2 = \frac{explained \ variance}{total \ variance}$ 

May-2018

| Regress | ion                                  |                                                                                                                                                                                                                                         | (                                                            | <b>GOPAL BHOOT</b>                |                           |
|---------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------|---------------------------|
|         | (c) both (a) and                     | d (b)                                                                                                                                                                                                                                   | (d) none                                                     |                                   |                           |
| 41.     | The two line of                      | f regression intersect at the                                                                                                                                                                                                           | e point                                                      |                                   | Nov-2018                  |
|         | (a) Mean                             | (b) Mode                                                                                                                                                                                                                                | (c) Median                                                   | (d) None of t                     | these                     |
| 42.     | If the two regree Nov-2018           | value of correlation                                                                                                                                                                                                                    | coefficient is                                               |                                   |                           |
|         | (a) 0.5<br>Answer:                   | (b) - 0.5                                                                                                                                                                                                                               | (c) 0.75                                                     | (d) 0.80                          |                           |
|         | (a) Let By<br>The st<br>We ha        | y = 6x be the equation of y<br>candard equation of y on x<br>ave $By = 6x$ $y = \frac{6}{7}x$ $y = \frac{1}{7}y$                                                                                                                        | f on x<br>is of the form $y = a + \frac{6}{2}x$              | -b <sub>yx</sub> x.               |                           |
|         | Comp                                 | earing this with the standar                                                                                                                                                                                                            | $^{8}$ d form, we have $b_{yx}$                              | $=\frac{6}{8}$                    |                           |
|         | Also,<br>The s<br>We h               | let $3x = y$ be the equation<br>standard equation of x on<br>ave $3x = y$ $x = \frac{1}{3}y$ $x = 0$                                                                                                                                    | of x on y.<br>y is of the form $x = a$<br>$0 + \frac{1}{3}y$ | $a + b_{xy}y$                     |                           |
|         | Com                                  | paring this with the standa                                                                                                                                                                                                             | rd form, we have $b_{xy}$                                    | $=\frac{1}{3}$                    |                           |
|         | Since                                | both the regression coeffi                                                                                                                                                                                                              | cients are positive, i                                       | $r = \sqrt{b_{yx} \times b_{xy}}$ |                           |
|         | $r = \sqrt{h}$                       | $\overline{b_{yx} \times b_{xy}} = \sqrt{\frac{6}{8} \times \frac{1}{3}} = 0.5$                                                                                                                                                         |                                                              |                                   |                           |
|         | Since                                | r lies between $-1$ and 1, of $x$ is the equation of $y$ on                                                                                                                                                                             | our assumption is cor                                        | rect and therefore,               |                           |
| 43.     | A.M. of regres                       | sion coefficients is                                                                                                                                                                                                                    | λ.                                                           |                                   | June-2019                 |
|         | (a) Equal to r<br>(c) Half of r      |                                                                                                                                                                                                                                         | (b) Greater tha<br>(d) None                                  | n or equal to r                   |                           |
| 44.     | Find the proba                       | ble error if $r = \frac{2}{\sqrt{10}}$ and n =                                                                                                                                                                                          | = 36                                                         |                                   | June-2019                 |
|         | (a) 0.6745<br><b>Answer:</b>         | (b) 0.067                                                                                                                                                                                                                               | (c) 0.5287                                                   | (d) None                          |                           |
|         | <b>(b)</b> $r = \frac{2}{\sqrt{10}}$ | p, n = 36, $P.E = ?$                                                                                                                                                                                                                    |                                                              |                                   |                           |
|         | Proba                                | ble Error P.E = $\frac{2}{3}$ S.E<br>= $\frac{2}{3} \frac{1-r^2}{\sqrt{n}}$<br>= $\frac{2}{3} \left[ \frac{1-(\frac{2}{\sqrt{10}})^2}{\Sigma 36} \right]$<br>= $\frac{2}{3} \left( \frac{1-(\frac{4}{\sqrt{10}})^2}{\Sigma 36} \right)$ |                                                              |                                   |                           |
|         |                                      | $=\frac{3}{3} \times \frac{6}{10 \times 6}$ $=\frac{1}{15}$ $= 0.067$                                                                                                                                                                   |                                                              |                                   |                           |
| 45.     | If two line of r<br>line             | egression are $x + 2y - 5 =$                                                                                                                                                                                                            | 0 and $2x + 3y - 8 =$                                        | 0. So $x + 2y - 5 = 0$            | is regression<br>Nov-2019 |
|         | (a) y on x                           | (b) x on y                                                                                                                                                                                                                              | (c) both                                                     | (d) None                          |                           |
|         | Answer:                              |                                                                                                                                                                                                                                         |                                                              |                                   |                           |
|         | (a) $x + 2y$                         | -5 = 0 Eq. 1 2x                                                                                                                                                                                                                         | + 3y - 8 = 0 H                                               | Eq. 2                             |                           |
|         | Let Ed                               | q 1 be y on x from Eq 2                                                                                                                                                                                                                 |                                                              |                                   |                           |
|         | $\mathbf{b}_{\mathbf{yx}} = -$       | $\frac{coeffof x}{coeffof y}$ $b_{xy} = \frac{-coeffof y}{coeffof x}$                                                                                                                                                                   | -                                                            |                                   |                           |

 $b_{yx} = \frac{coeffof y}{coeffof y} = \frac{b_{xy}}{coeffo}$   $b_{yx} = \frac{-1}{2} \quad b_{xy} = \frac{-3}{2}$   $b_{yx} \times b_{xy} = \left(\frac{-1}{2}\right) \times \left(\frac{-3}{2}\right) = \frac{3}{4}$ So,  $b_{yx} \times b_{xy} < 1$ So, x + 2y - 5 = 0 is y on x

and 
$$2x + 3y - 8 = 0$$
 is x on y.  
46. Find the coefficient of correlation  $2x + 3y = 24x + 3y = 4$ , Nov-2019  
(a) 0.5 (b)  $-\sqrt{0.5}$  (c) 0.25 (d)  $-0.25$   
47. The intersecting point of the two regression lines: y on x and x on y is Jan  $-2021$   
(a) (0, 0) (b)  $(\bar{x}, \bar{y})$  (c)  $(b_{yx}, b_{xy})$  (d) (1, 1)  
Answer:  
(b) The Intersection point of two regression  
lines y on x and x on y is (x, y)  
48. Given that the variance of x is equal to the square of standard deviation by and the regression  
line of y on x is  $y = 40 + 0.5$  (x-30). The regression line of x on y is Jan  $-2021$   
(a)  $y = 40 + 4(x = 30)$  (b)  $y = 40 + (x - 30)$  (c)  $(y = 40 + 2(x - 30)$  (d)  $x = 30 + 2(y - 40)$   
Answer:  
(d) Here Regression Equation of line y on x  
 $y = 40 + 0.5$  (x  $-30$ )  
Comparing from (y  $- y$ )  $- b_{xx}$  (x  $- \bar{x}$ )  
we get  $\bar{x} = 30$ ,  $\bar{y} = 40$ ,  $b_{xx} = 0.5$   
we know that  
 $b_{y,x} > b_{y,y} = 1$   
 $b_{xy} = \frac{10}{b_{xy}} = \frac{20}{0.5} = 2$   
(b)  $-2$   
49. The regression coefficients remain unchanged due to Jan  $-2021$   
(a)  $b = 1$  (b)  $b \neq 0$  (c)  $b = 0$  (d)  $a = b \neq 0$   
Answer:  
(e) Given line  $y = a + bx$   
 $slope of horizontal if  $b = 0$   
51. If byx = -1.6 and bxy = -0.4, then regression the square of (d) 0.8  
Answer:  
(b)  $r_{xy} = \frac{1}{\sqrt{b_{yx} \times b_{xy}}} = \frac{1}{2} + \sqrt{(-1.6) \times (-0.4)} = -\sqrt{0.64} = -0.8$   
52. If the slope of the regression line is calculated to be 5.5 and the intercept 15 then the value of  
Y when X is 6 is:  
 $y = 15 + 5.5 \times 6$   
 $= 15 + 33$   
 $y = 48$   
53. For any two variables x and y the regression equations are given as  $2x + 5y - 9 = 0$  and  $3x - y$   
 $-5 = 0$ . What are the A.M of x and y? (c) (2, 4, 2)$  (d) 2,4

The intersecting point of two regression lines falls at X-axis. If the mean of X- values is 16, 54. the standard deviations of X and Y are respectively, 3 and 4, then the mean of Y- Values is **Dec 2021** (a) 16/3(b) 4 (c) 0(d) 1 55. The regression coefficients remain unchanged due to **Dec 2021** (a) shift of origin (b) Shift of scale (c) Always (d) Never The equations of the two lines of regression are 4x + 3y + 7 = 0 and 3x + 4y + 8 = 0. Find the 56. correlation coefficient between x and y? **Dec 2022** (a) - 0.75(b) 0.25 (c) -0.92(d) 1.25 Answer: (a) Given two Equations of Regression lines are: 4x + 3y + 7 = 0and 3x + 4y + 8 = 0and by  $y = \frac{-coeffof x}{coeffof y}$ by  $x = \frac{-3}{4}$  $bxy = \frac{-coeffof y}{coeffof x}$  $bxy = \frac{-3}{4}$ Coeff. of correlation is given by:  $r = \pm \sqrt{byx \times bxy}$  $=\pm\sqrt{(-3/4)\times(-3/4)}$  $= -\sqrt{\frac{3}{16}}$  $= \frac{-3}{4}$ r = -0.75The regression equations are 2x + 3y + 1 = 0 and 5x + 6y + 1 = 0, then Mean of x and y 57. **Dec 2022** respectively are: (a) -1,-1 (b) -1, 1 (c) 1, -1 (d) 2,3 Answer: (c) Given Regression Equations are:  $2x + 3y + 1 = 0 \Longrightarrow 2x + 3y = -1$  (1) and  $5x + 6y + 1 = 0 \implies 5x + 6y = -1$  (2) multiply by (2) in eq. (1) we get 4x + 6y = -2 (3) eq.(2) - eq.(3)5x + 6y = -14x + 6y = -2- - / + x = 1Putting x = 1 in equation (1)  $2 \times 1 + 3y = -1$ 2 + 3y = -13y = -1 - 23v = -3y = -1 Ans. x = 1, y = -1If  $b_{yx} = 0.5$ ,  $b_{xy} = 0.46$  then the value of correlation coefficient r is: **Dec 2022 58.** (a) 0.23(d) 0.48(b) 0.25 (c) 0.39**Answer:** (d) Given byx = 0.5, bxy = 0.46 find r = ?Coeff. of correlation  $r = \pm \sqrt{byx \times bxy}$ 

 $=\pm\sqrt{0.5 \times 0.46}$  $=+\sqrt{0.23}$ =+0.48**59**. If the regression equations are x+2y-5=0 and 2x+3y-8=0 then the r, x and the mean of y are respectively. June 2023 (a) -3&4 (b) -2&4 (c) 1&2 (d) 2&1 Answer: (c) Given two Regression Equation and 2x + 3y - 8 = 0x + 2y - 5 = 0x + 2y = 5 -----(1) and 2x + 3y = 8 -----(2) From equation (1) x + 2y = 52v = 5 - xx = 5 - 2y -----(3) Putting the value of x in eq (2)2(5-2y) + 3(y) = 810 - 4y + 3y = 810 - y = 8y = 10 - 8y=2Puting  $y = \overline{2 \text{ in eq}} (3)$  $x = 5 - 2 \times 2$ = 5 - 4= 1 Mean of x = 1 and Mean of y = 2**60.** The regression lines will be perpendicular to each other when the value of r is **June 2023** (a) 1 (b) -1  $(c) \frac{1}{2}$ (d) 0Answer: (d) The regression lines will be perpendicular to each other when  $\underline{r=0}$ **61.** For variables X and Y for a set of four observation , X=10, Y=14,  $X^2 = 65$   $Y^2 = 99$  and XY=3, then the regression line on Y on X is : June 2023 (b) Y = 0.8X - 5.5(a) Y = -0.8X - 5.5(c) Y = -0.8X + 5.5(d) Y = 0.8X + 5.5Answer: (c) Here x = 10, y = 14,  $x^2 = 65$ ,  $y^2 = 99$ xy = 3, N = 4 $\bar{x} = \frac{\sum x}{N} = \frac{10}{4} = 2.5$  $\bar{x} = \frac{N}{N} - \frac{1}{4} - 2.5$  $\bar{y} = \frac{\Sigma y}{N} = \frac{14}{4} = 3.5$  $byx = \frac{N \sum xy - \sum x \sum y}{N \sum xy - \sum x \sum y}$  $N\sum x^2(\sum x)^2$  $4 \times 65 - (10)^2$  $\frac{12-140}{260-100} = \frac{128}{160} = -0.8$ 260-100 Regression equation of line y on x y-y = byx(x-x)y - 3.5 = -0.8(x - 2.5)y - 3.5 = -0.8x + 2=-0.8x+5.5y If the regression line of y on x and x on y are given by 10x-290 = -20y and 7y - 104 = -4x. **62.** Then the arithmetic means of x and y are given by: dec 2023 (a)5,12(d)5,7 (b)7,12(c)12,5 Answer: (a) Given two regression equation 10x - 290 = -20y10x + 20y = 290 (1)

7y - 104 = -4x4x + 7y = 104(2) Solving equation (1) & (2) we get x = 5, y = 12Mean of x = x = 5Mean of y = y = 12If the coefficient of correlation is 0.8 and regression coefficient  $b_{yx}$ ? dec 2023 **63.** (a) 2 (b) 1 (c) 0.52(d) 0.48Answer: (a) Given Coeff. of correlation (r) = 0.8.  $b_{xy} = 0.32$  $b_{vx} = ?$ We know that  $r=\pm\sqrt{b_{yx}\times b_{xy}}$  $r^2 = b_{yx} \times b_{xy}$  $(0.8)^2 = b_{yx} \times 0.32$  $b_{yx} = \frac{(0.8)^2}{0.32} = \frac{0.8 \times 0.8}{0.32} = 2$ If the Regression coefficient  $(r_{yx})$  of y on x is greater than unity, then other Regression **64**. coefficient  $(r_{xy})$  of x on y is: dec 2023 (b) Greater than one (a) Less than one (c) Equal to one (d) Equal to zero **Answer:** (a) If the Regression Coefficient y on x is greater than unity, then other Regression Coefficient of x on y is less than one. If 4y - 6x = 18 is regression line of y on x and coefficient of correlation between x and y is **65**. 0.8. What is the value of regression coefficient of x on y ? dec2023 (a) 0.24448 (b) 0.4267 (c) 0.5733 (d) 0.7441 Answer: (b) Given the Regression Equation of line y on x is 4y - 6x = 186x - 4y + 18 = 0Then  $b_{yx} = \frac{-\text{Coeff.ofx}}{\text{Coeff.ofy}} = \frac{-6}{-4} = 1.5$ and  $b_{xy} = 0.8$ Then  $r = \pm \sqrt{b_{yx} \times b_{xy}}$  $0.8 = \pm \sqrt{1.5 \times b_{xy}}$  $(0.8)^2 = 1.5 \times b_{xy}$  $0.64 = 1.5 \times b_{xy}$  $b_{xy} = \frac{0.64}{1.50} = 0.4267$ 

|     | Answer Key |     |   |     |   |     |   |     |   |     |   |     |   |     |   |     |   |     |   |
|-----|------------|-----|---|-----|---|-----|---|-----|---|-----|---|-----|---|-----|---|-----|---|-----|---|
| 1.  | d          | 2.  | d | 3.  | d | 4.  | С | 5.  | d | 6.  | с | 7.  | d | 8.  | с | 9.  | b | 10. | a |
| 11. | b          | 12. | a | 13. | d | 14. | a | 15. | d | 16. | b | 17. | d | 18. | b | 19. | a | 20. | с |
| 21. | b          | 22. | b | 23. | b | 24. | а | 25. | d | 26. | b | 27. | с | 28. | a | 29. | b | 30. | С |
| 31. | b          | 32. | с | 33. | b | 34. | d | 35. | с | 36. | a | 37. | b | 38. | a | 39. | d | 40. | b |
| 41. | a          | 42. | a | 43. | b | 44. | b | 45. | a | 46. | b | 47. | b | 48. | d | 49. | b | 50. | с |
| 51. | b          | 52. | b | 53. | a | 54. | с | 55. | a | 56. | a | 57. | с | 58. | d |     |   |     |   |

### **GOPAL BHOOT**

CHAPTER PROBABILITY

# **PAST YEAR QUESTIONS**

| 1.  | There are six slips        | in a box an      | d numbers        | 1, 1, 2, 2, 3           | 3, 3 are writ         | ten on these sli      | ps. Two slips                                                                                                         |
|-----|----------------------------|------------------|------------------|-------------------------|-----------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------|
|     | are taken at random        | n from the b     | ox. The exp      | bected value            | s of the sum          | of numbers or         | the two slips                                                                                                         |
|     | 1S:                        | $(\mathbf{b})$ 3 |                  | (c)                     | Λ                     | (d) 7                 | 1107-2000                                                                                                             |
| 2.  | A letter is taken ou       | t at random      | from the w       | ord RANG                | +<br>E and anothe     | er is taken out f     | from the word                                                                                                         |
|     | PAGE. The probab           | ility that the   | v are the sa     | me letters i            | s :                   |                       | Nov-2006                                                                                                              |
|     | (a) 1/20                   | (b) 3/2          | 20               | (c)                     | 3/5                   | (d) $\frac{3}{4}$     |                                                                                                                       |
| 3.  | An urn contains 91         | balls two of     | which are 1      | ed, three bl            | ue and four           | black. Three ba       | alls are drawn                                                                                                        |
|     | at random. The pro         | bability that    | they are of      | same colou              | ır is:                |                       | Nov-2006                                                                                                              |
|     | (a) 3/27                   | (b) 20           | /31              | (c)                     | 5/84                  | (d) Non               | e                                                                                                                     |
| 4.  | A card is drawn fro        | om a well sh     | uffled pack      | of 52 cards             | s. Let $E_1$ , "a     | king or a queer       | n is drawn" &                                                                                                         |
|     | $E_2$ : "a queen or a ja   | ack is drawr     | $1^{"}$ , then : |                         |                       | . 11                  | Nov-2006                                                                                                              |
|     | (a) $E_1$ and $E_2$ are no | ot mutually (    | exclusive.       | (d)                     | $E_1$ and $E_2$ at    | re mutually exc       | clusive                                                                                                               |
| 5   | $(C) E_1$ and $E_2$ are m  | the probab       | ility of got     | (U)<br>ting 53 Sup      | None of the           | uesdavs or 53 '       | Thursdays is .                                                                                                        |
| 5.  | Nov-2006                   | , the probat     | onity of get     | ing 55 Suit             | Lays 01 55 1          | uesuays of 55         | Thursdays is .                                                                                                        |
|     | (a) 4/7                    | (b) 2/           | 7                | (c)                     | 3/7                   | (d) 1/7               |                                                                                                                       |
| 6.  | From a pack of car         | ds, two are      | drawn, the       | first being r           | eplaced before        | ore the second        | is drawn. The                                                                                                         |
|     | chance that the first      | t is a diamo     | nd and the s     | second is kin           | ng is :               |                       | <b>May-2007</b>                                                                                                       |
|     | (a) 1/52                   | (b) 3/2          | 2704             | (c)                     | 4/13                  | (d) 3/52              |                                                                                                                       |
| 7.  | The probability of         | getting qual     | lified in IIT    | - JEE and J             | AIEEE by a            | the student ar        | e respectively                                                                                                        |
|     | 1/5 and 3/5. The pr        | obability the    | at the stude     | nt gets quali           | ified for one         | of the these tes      | sts is : May-                                                                                                         |
|     | 2007                       | (h) 22           | 125              |                         | 0/25                  | (1) 2/25              | ·                                                                                                                     |
| 8   | (a) $14/23$                | (0) 22 (0)       | 723              | (C)<br>If the numb      | 0/2J or loss than     | $(\mathbf{u}) \ 5/23$ | ,<br>is getting ₹ a                                                                                                   |
| 0.  | otherwise he has to        | nav ₹ 10 It      | f the game i     | s fair find             |                       | 5 appears, ne         | May-2007                                                                                                              |
|     | (a) 25                     | (b) 20           | the game i       | (c)                     | 27<br>27              | (d) 18                | 101ay-2007                                                                                                            |
| 9.  | Suppose E and F and        | e two event      | s of a rando     | om experim              | ent. If the p         | robability of oc      | currence of E                                                                                                         |
|     | is $1/5$ and or pro        | bability of      | occurrence       | e of F giv              | en E is $1/$          | 10, then the r        | probability of                                                                                                        |
|     | nonoccurrence of a         | t least one o    | f the events     | s E and F is            | :                     | · 1                   | Aug-2007                                                                                                              |
|     | (a) 1/50                   | (b) 1/2          | 25               | (c)                     | 13/50                 | (d) 49/5              | 50                                                                                                                    |
| 10. | Among the exam             | inees in ar      | examinat         | ion 30%, (              | 35% and 4             | 5% failed in          | Statistics, in                                                                                                        |
|     | Mathematics and            | in at least of   | one of the       | subjects re             | spectively.           | An examinee           | is selected at                                                                                                        |
|     | random. Find the p         | robability th    | at he failed     | l in Mathem             | atics only :          |                       | Nov-2007                                                                                                              |
| 11  | (a) 0.15                   | (b) 0.2          | 25               | (C)                     | 0.254                 | (d) 0.55              | )<br>A the state of the st |
| 11. | An article consists        | of two parts     | S A and B.       | The manufa $D = 0.05$ W | turing pro            | cess of each pa       | rt is such that                                                                                                       |
|     | product will not be        | u III A IS U.(   | 70 and that      | D 18 0.03. W            | vitat is the p        | Tobability that       | Nov-2007                                                                                                              |
|     | (a) 0.934                  | (b) 0 S          | л:<br>864        | (c)                     | 0.85                  | (d) $0.87$            | 1 <b>107-200</b> 7                                                                                                    |
| 12. | Daily demand for c         | alculators is    | having the       | e following i           | o.oo<br>probability c | listribution :        | Nov-2007                                                                                                              |
|     | Demand :                   | 1                | 2                | 3                       | 4                     | 5                     | 6                                                                                                                     |
|     | <b>Probability :</b>       | 0.10             | 0.15             | 0.20                    | 0.25                  | 0.18                  | 0.12                                                                                                                  |
|     | Determine the varia        | ance of the d    | lemand.          |                         |                       | · · ·                 |                                                                                                                       |
|     | (a) 2.54                   | (b) 2.9          | 93               | (c)                     | 2.22                  | (d) 2.19              | )                                                                                                                     |
| 13. | If 10 men, among           | whom are A       | and B, : s       | tand in a ro            | w, what is t          | he probability        | that there will                                                                                                       |
|     | be exactly 3 men be        | etween A ar      | dB?              |                         |                       |                       | Feb-2008                                                                                                              |
|     | (a) 11/15                  | (b) 4/           | 15               | (c)                     | 1/15                  | (d) 2/15              |                                                                                                                       |
| 14. | The odds are 9 : 5         | against a I      | person who       | is 50 years             | s living till         | he is 70 and 8        | : 6 against a                                                                                                         |
|     | person who is 60 li        | ving till he     | is 80. Find      | the probabil            | ity that at le        | ast one of then       | n will be alive                                                                                                       |

| 1100401 | inty                                         |                                      | J1.4                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |          | U      | OTAL DIIO        |
|---------|----------------------------------------------|--------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------|--------|------------------|
|         | after 20 years:                              |                                      |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |          |        | Feb-2008         |
|         | (a) 11/14                                    | (b) 22/49                            |                                                       | (c) 31/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 49                   | (d)      | 35/49  |                  |
| 15.     | If $P(A) = p$ and $P(B)$                     | = q, then :                          |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                    |          |        | June-2008        |
|         | (a) $P(A/B) \leq q/p$                        | (b) $P(A / B) =$                     | ≥ p/q                                                 | (c) P (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $A/B) \leq p/q$      | (d) l    | P (A / | $B) \geq q/p$    |
| 16.     | The probability that                         | a trainee will re                    | main with                                             | a comp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | oany is 0.8. T       | he p     | robab  | ility that an    |
|         | employee earns more                          | than ₹ 20,000 pe                     | er month is                                           | 6 0.4. Th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e probability        | that a   | an em  | ployee, who      |
|         | was a trainee and rem                        | ained with the co                    | ompany or                                             | who ear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rns more than        | ₹ 20     | ,000 ] | per month is     |
|         | 0.9.What is the proba                        | bility that an em                    | ployee ear                                            | ns more                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | than ₹ 20,000        | ) per    | mont   | h given that     |
|         | he is a trainee, who sta                     | ayed with the cor                    | npany?                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |          | - 10   | <b>June-2008</b> |
|         | (a) 5/8                                      | (b) 3/8                              | 1 1 11.                                               | (c) 1/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | (d)      | 7/8    | <b>T 0</b> 000   |
| 17.     | A random variable X                          | has the following                    | probabilit                                            | y distrib                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ution :              |          | 1      | June-2008        |
|         | $\mathbf{X}$ :                               |                                      | -2                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                    |          | 1      |                  |
|         | P(X = X): Find E (X <sup>2</sup> ) and E (2) | V . 5)                               | 1/3                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1/2                  |          | 1/6    |                  |
|         | Find E $(X^2)$ and E $(Z^2)$                 | X + 3                                |                                                       | (b) 5 or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ad 7 manuactive      | .1       |        |                  |
|         | (a) 6 and 7 respectivel                      | ly                                   |                                                       | (0) 5 a a (d) 7 a (d) | nd / respective      | ly<br>ly |        |                  |
| 18      | (c) / and J respectives                      | ly                                   | (1 if (                                               | (u) / a < 0 < x < 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                    | Jy       |        |                  |
| 10.     | If a probability density                     | y function is $f(x)$                 | $= \begin{cases} 1 \ i \ j \ c \\ 0 \ ot \end{cases}$ | herwise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _ then find I        | E(x)     |        | <b>Dec-2008</b>  |
|         | (a) ∞                                        | (b) 0                                | 0.00                                                  | $(c) \frac{1}{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ·                    | (d)      | - ∞    |                  |
| 19.     | Then find E $(2x + 5)$                       |                                      |                                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dec-2008             |          |        |                  |
|         | (a) 7                                        | (b) 6                                |                                                       | (c) 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      | (d)      | 4      |                  |
| 20.     | If A and B are two inc                       | lependent evens a                    | and P(AUE                                             | (3) = 2/5;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | P(B) = 1/3. Fi       | nd P     | P(A).  | June-2009        |
|         | (a) 2/9                                      | (b) -1/3                             |                                                       | (c) 2/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                    | (d)      | 1/10   |                  |
| 21.     | A bag contains 12 bal                        | lls of which 3 are                   | e red 5 bal                                           | ls are dr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | awn at randor        | n. Fi    | nd the | e probability    |
|         | that in 5 balls 3 are re-                    | d.                                   |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |          |        | June-2009        |
|         | (a) 3/132                                    | (b) 5/396                            |                                                       | (c) 1/30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | б                    | (d)      | 1/22   |                  |
|         | Answer:                                      | с сл ·                               | <b>~</b> 1 11                                         | 6.1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120                  |          |        |                  |
|         | (d) Total number of                          | of cases of drawin                   | $\frac{1}{2}$ balls o                                 | ut of 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | balls = ${}^{12}C_5$ |          |        |                  |
|         | Cases when ou                                | it of 5 balls draw                   | n, 3 are re                                           | $d = C_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |          | مرار م | ····· fuo ···    |
|         | II 5 are red, th                             | ien the other 2 da                   | ins may be                                            | of any c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | colour which i       | nay      | be dra | wn from          |
|         | Therefore the                                | $cases$ are ${}^{9}C_{2}$            |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |          |        |                  |
|         | So the probab                                | bility that in 5 hal                 | lls 3 are rec                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |          |        |                  |
|         | $C_3^3 \times C_2^9$                         | 1×36 1                               |                                                       | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |          |        |                  |
|         | $=\frac{-5-2}{C_5^{12}}=-$                   | $rac{1}{792} = rac{1}{22}$          |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |          |        |                  |
| 22.     | A random variable X                          | has the following                    | , probabilit                                          | y distrib                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ution.               |          |        | June-2009        |
|         | Х                                            | 0                                    | 1                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                    |          | 3      |                  |
|         | P(x)                                         | 0                                    | 2K                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3K                   |          | Κ      |                  |
|         | Then, $P(x < 3)$ would                       | be:                                  |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |          |        |                  |
|         | (a) 1/6                                      | (b) 1/3                              |                                                       | (c) 2/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | (d)      | 5/6    |                  |
|         | Answer:                                      | 1                                    |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |          |        |                  |
|         | (d) Since $\sum P(x) =$                      | =  <br>12111                         |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |          |        |                  |
|         | therefore, $0+2$                             | 2K + 3K + K = 1                      |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |          |        |                  |
|         |                                              | OK = 1                               |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |          |        |                  |
|         |                                              | $K = \frac{1}{6}$                    |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |          |        |                  |
|         | P(x < 3) = P(x)                              | =0) + P(x=1) + P(x=1)                | (x=2)                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |          |        |                  |
|         | = 0 + 2k                                     | +3k = 5k                             |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |          |        |                  |
|         | $=5\times\frac{1}{6}$                        | $(as k = \frac{1}{6}) = \frac{5}{6}$ |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |          |        |                  |
| 23.     | P(A) = 2/3; P(B) = 3/3                       | 5; $P(A \cup B) = 5/6$ .             | Find P (B/                                            | 'A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |          |        | Dec-2009         |
|         | (a) 11/20                                    | (b) 13/20                            | •                                                     | (c) 13/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18                   | (d)      | None   |                  |
|         | Answer:                                      |                                      |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |          |        |                  |
|         | <b>(b)</b> $P(A) = 2/3$                      |                                      |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |          |        |                  |

P(B) = 3/5

Probability

**GOPAL BHOOT** 

26.

7) is

(a) 5/12

P(AUB) = 5/6  
P(A)+P(B) - P(A \cap B) = P(AUB)  

$$\frac{2}{3} + \frac{3}{5} - P(A \cap B) = \frac{5}{6}$$
  
 $\frac{10+9}{15} - P(A \cap B) = \frac{5}{6}$   
 $P(A \cap B) = \frac{19}{15} - \frac{5}{6}$   
 $P(A \cap B) = \frac{38-25}{30} = \frac{13}{30}$   
Now, P(B/A) =  $\frac{P(A \cap B)}{P(A)} = \frac{\frac{33}{2}}{\frac{2}{3}} = \frac{13}{30} \times \frac{2}{3} = \frac{13}{20}$   
 $\therefore P(B/A) = \frac{13}{20}$   
24. In a pack of playing cards with two jokers probability of getting king of spade is June-2010  
(a) 4/13 (b) 4/52 (c) 1/52 (d) 1/54  
Answer:  
(d) Pack of playing cards contain 52 cards + 2 Jokers = Total cards are 54  
Total no. of spade king = 1  
 $\therefore$  Probability of getting spade king  $=\frac{1}{54}$   
25. Consider two events A and B not mutually exclusive, such that P(A) = 1/4, P(B) = 2/5, P(A \cup B) = \frac{1}{2}, then  $P(A\overline{B})$  is June-2010

(a) 3/7 (b) 2/10 (c) 1/10(d) None of the above Answer:

(d) Since the two events are not mutually exclusive, they are independent events. The events A and B are

independent if 
$$P(AB) = P(A) \cdot P(B)$$
  
 $\therefore P(A\overline{B}) = P(A) \cdot P(\overline{B})$   
 $= P(A) \cdot [1 - P(B)]$   
 $= \frac{1}{4} \cdot (1 - \frac{2}{5})$   
 $= \frac{1}{4} \cdot \frac{3}{5}$   
 $= \frac{3}{20}$   
Moreover,  
 $P(A | B) = P(A) + P(B) - P(A \cup B)$   
 $= \frac{1}{4} + \frac{2}{5} - \frac{1}{2} = \frac{3}{20}$   
Note : In case of independent events, the multiplication theorem becomes.  
 $P(A \cap B) = P(A) \times P(B)[\overline{P}(A/B) = P(A) \text{ and } P(B/A) = P(B)]$   
If x be the sum of two numbers obtained when two die are thrown simultaneously then  $P(x \ge 7)$  is June-2010  
(a) 5/12 (b) 7/12 (c) 11/15 (d) 3/8  
Answer:

(**b**) While, throwing two dice

Total no. of outcomes = 36Total no. of outcomes = 36 Probability of sum = 7 is  $\frac{6}{36}$ Probability of sum = 8 is  $\frac{5}{36}$ Probability of sum = 9 is  $\frac{4}{36}$ Probability of sum = 10 is  $\frac{3}{36}$ Probability of sum = 11 is  $\frac{2}{36}$ Probability of sum = 12 is  $\frac{1}{36}$   $\therefore$  Required Probability =  $\frac{21}{36} = \frac{7}{12}$ 

| Probab | ility                      |                                                   | 3                                                                              | GOPAL BHOOT                          |                             |
|--------|----------------------------|---------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------|-----------------------------|
| 27.    | E(13x+9) =                 |                                                   |                                                                                | June-2010                            |                             |
|        | (a) 13x                    | (b                                                | ) 13E(x)                                                                       | (c) $13E(x) + 9$                     | (d) 9                       |
|        | Answer:                    | Ň                                                 |                                                                                |                                      |                             |
|        | (c) E(x+                   | -y) = E(x) + E                                    | (y)                                                                            |                                      |                             |
|        | ÷ Е(                       | (13x + 9) = 13                                    | E(x) + E(9)                                                                    |                                      |                             |
|        |                            | = 13E(x) - 13E(x)                                 | $+9$ [ $\therefore$ E(K) = K f                                                 | for any constant K]                  |                             |
| 28.    | A dice is thro             | wn once. What                                     | at is the mathema                                                              | tical expectation of the             | number on the dice ? Dec-   |
|        | 2010                       |                                                   |                                                                                |                                      |                             |
|        | (a) 16/6                   | (b                                                | ) 13/2                                                                         | (c) 3.5                              | (d) 4.5                     |
|        | Answer:                    |                                                   |                                                                                |                                      |                             |
|        | ( <b>c</b> )               |                                                   | -                                                                              | <i>(</i> )                           |                             |
|        |                            | X                                                 | $\mathbf{P}(\mathbf{x})$                                                       | <b>x.p(x)</b>                        |                             |
|        |                            | 1                                                 | 1/6                                                                            | 1/6                                  |                             |
|        |                            | 2                                                 | 1/6                                                                            | 2/6                                  |                             |
|        |                            | 3                                                 | 1/6                                                                            | 3/6                                  |                             |
|        |                            | 4                                                 | 1/6                                                                            | 4/6                                  |                             |
|        |                            | 5                                                 | 1/6                                                                            | 5/6                                  |                             |
|        |                            | 6 _                                               | 1/6                                                                            | 6/6                                  |                             |
|        |                            | _                                                 | 1                                                                              | 21/6                                 |                             |
|        |                            |                                                   | $\sum rn(r) = 21$                                                              |                                      |                             |
|        | E                          | xpected value                                     | $=\frac{\sum p(x)}{\sum p(x)}=\frac{\sum 1}{6}=$                               | 3.5                                  |                             |
| 29.    | If $P(A/B) = P$            | (A), then A an                                    | nd B are                                                                       |                                      | <b>Dec-2010</b>             |
|        | (a) Mutually               | exclusive even                                    | nts                                                                            | (b) Dependent ev                     | vents                       |
|        | (c) Independe              | ent events                                        |                                                                                | (d) Composite ev                     | vents                       |
|        | Answer:                    |                                                   |                                                                                |                                      |                             |
|        | (c) P(A/E                  | $\mathbf{B}) = \mathbf{P}(\mathbf{A})$            |                                                                                |                                      |                             |
|        | P(A/B                      | $P(A \cap B) = \frac{P(A \cap B)}{P(A \cap B)} =$ |                                                                                |                                      |                             |
|        |                            | P(B)                                              | P(B) $P(D)$                                                                    |                                      |                             |
| 20     | Since                      | P(A   B) =                                        | P(A) P(B)                                                                      |                                      | T 0011                      |
| 30.    | If $P(A \cup B) =$         | = P(A), Find                                      | $P(A \cap B)$                                                                  |                                      | June-2011                   |
|        | (a) $P(A).P(B)$            | (b                                                | P(A) + P(B)                                                                    | (c) $0$                              | (d) P(B)                    |
|        | Answer:                    |                                                   |                                                                                |                                      |                             |
|        | ( <b>a</b> ) Give          | n : P(AUB) =                                      | = P(A)                                                                         |                                      |                             |
|        | we                         |                                                   |                                                                                |                                      |                             |
|        | P(A                        | $\bigcup B = P(A) +$                              |                                                                                |                                      |                             |
| 21     | ∴ W                        | e get P(A  E                                      | P(B) = P(B)                                                                    | mode out of 7 Dava a                 | ad 9 Cirls if 2 Cirls are   |
| 51.    | In now many                | vays a teal                                       |                                                                                | nade out of / boys a                 |                             |
|        | (a) 2 646                  | b loini a Tean                                    | 1.<br>) 1 722                                                                  | (a) 2 702                            | June-2011<br>(d) 080        |
| 32     | (a) 2,040<br>The probabili | (U<br>ty of Girl gett                             | ) 1,722<br>ing scholarshin i                                                   | (C) 2,702<br>s 0.6 and the same prob | ability for Boy is 0.8 Find |
| 54.    | the probabilit             | v that at least                                   | one of the catego                                                              | s 0.0 and the same prot              |                             |
|        | (a) 0.32                   | y that at least                                   | 0.044                                                                          | (c) 0.02                             | (d) None of the above       |
|        | (a) 0.52<br>Answer         | (U                                                | ) 0.44                                                                         | (0) 0.72                             | (d) None of the above.      |
|        | (c) Prob                   | ability of Girl                                   | getting scholars                                                               | hin $P(A) = 0.6$                     |                             |
|        | Prob                       | ability of Boy                                    | vs getting scholar                                                             | rship P(B) = 0.8                     |                             |
|        | Rea                        |                                                   |                                                                                |                                      |                             |
|        |                            |                                                   |                                                                                |                                      |                             |
|        | -                          | (1112) (1                                         |                                                                                | ,                                    |                             |
|        | = P                        | $P(\overline{A}) P(B) + P(B)$                     | $\mathbf{A}) \cdot \mathbf{P}(\overline{\mathbf{B}}) + \mathbf{P}(\mathbf{A})$ | • P(B)                               |                             |
|        | = [                        | $1 - P(A) ] \cdot P(B)$                           | $) + P(A) \cdot [1 - P(A)]$                                                    | $P(B)] + P(A) \cdot P(B)$            |                             |
|        | = (                        | (1-0.6)(0.8) + 0                                  | $0.6(1-0.8) + 0.6 \times$                                                      | 0.8                                  |                             |
|        | = 0                        | .32 + 0.12 + 0                                    | .48                                                                            |                                      |                             |
|        | = 0                        | 0.92                                              |                                                                                |                                      |                             |
| 33.    | Two unbiased               | d dice are through                                | own. The Expect                                                                | ed value of the sum of               | numbers on the upper side   |

| Probab | ility                                                                                                                                                                                    | 37.5                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                 |                       |  |  |  |  |  |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------|--|--|--|--|--|
|        | is;                                                                                                                                                                                      |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ]                                                               | Dec-2011              |  |  |  |  |  |
|        | a) 3.5                                                                                                                                                                                   | b) 7                                                                                                                                                                                                                              | c) 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | d) 6                                                            |                       |  |  |  |  |  |
|        | Answer:                                                                                                                                                                                  |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                 |                       |  |  |  |  |  |
|        | (b) Accor                                                                                                                                                                                | rding to the formula of Add $(y) = F(y) + F(y)$                                                                                                                                                                                   | ition Law of Expectatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | on                                                              |                       |  |  |  |  |  |
|        | E(X+)<br>$\therefore Exr$                                                                                                                                                                | y = E(x) + E(y)                                                                                                                                                                                                                   | lice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                 |                       |  |  |  |  |  |
|        | E(x) =                                                                                                                                                                                   | $= p_1 x_1 + p_2 x_2 + p_3 x_3 + \dots$                                                                                                                                                                                           | $1 + p_{6} x_{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                 |                       |  |  |  |  |  |
|        |                                                                                                                                                                                          | $= \begin{bmatrix} 1 \\ -1 \end{bmatrix} \times 1 + \begin{bmatrix} 1 \\ -1 \end{bmatrix} \times 2 + \begin{bmatrix} 1 \\ -1 \end{bmatrix} \times 3$                                                                              | $+ \left[\frac{1}{2}\right] \times 4 + \left[\frac{1}{2}\right] \times 5 + \left[\frac{1}{2$ | $\frac{1}{2} \times 6$                                          |                       |  |  |  |  |  |
|        |                                                                                                                                                                                          | $\begin{bmatrix} 6 \end{bmatrix} \begin{bmatrix} 7 \end{bmatrix} \begin{bmatrix} 7 \end{bmatrix}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6]                                                              |                       |  |  |  |  |  |
|        | _                                                                                                                                                                                        | $-\frac{1}{6}(1+2+3+4+3+0) - \frac{1}{2}$                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                 |                       |  |  |  |  |  |
|        | $\therefore$ Exp                                                                                                                                                                         | pectation of a number on a c                                                                                                                                                                                                      | lice $=\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                 |                       |  |  |  |  |  |
|        | $\therefore E(x)$                                                                                                                                                                        | $f(x) = \frac{7}{2}$ ; E(y) = $\frac{7}{2}$ (since II <sup>nd</sup> di                                                                                                                                                            | ice will also give same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | result)                                                         |                       |  |  |  |  |  |
|        | $\therefore E(x)$                                                                                                                                                                        | $(x+y) = E(x) + E(y) = \frac{7}{2} + \frac{7}{2} = \frac{1}{2}$                                                                                                                                                                   | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                 |                       |  |  |  |  |  |
| 34.    | In a packet of                                                                                                                                                                           | 500 pens, 50 are found to                                                                                                                                                                                                         | be defective. A pen is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | selected at random.                                             | Find the              |  |  |  |  |  |
|        | probability the                                                                                                                                                                          | at it is non defective. $127/9$                                                                                                                                                                                                   | -) 0/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1) 2/2                                                          | Dec-2011              |  |  |  |  |  |
|        | a) 8/9<br>Answer:                                                                                                                                                                        | b) //8                                                                                                                                                                                                                            | c) 9/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d) 2/3                                                          |                       |  |  |  |  |  |
|        | (c) Total                                                                                                                                                                                | pen in the packet $= 500$                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                 |                       |  |  |  |  |  |
|        | No. of defective pen = $50$                                                                                                                                                              |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                 |                       |  |  |  |  |  |
|        | No. of Non-defective pen = $500-50 = 450$                                                                                                                                                |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                 |                       |  |  |  |  |  |
|        | If a pen is selected sample space $n(s) = {}^{500}C_1 = 500$                                                                                                                             |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                 |                       |  |  |  |  |  |
|        | Event (A) = pen is non defective $n(A) = \frac{100}{10}C_1 = 450$<br>$P(a = a + b + c + c + a = a) = \frac{n(A)}{450} = \frac{450}{9}$                                                   |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                 |                       |  |  |  |  |  |
|        | P(nor                                                                                                                                                                                    | $\frac{1}{n(S)} = \frac{1}{n(S)} = \frac{1}{50}$                                                                                                                                                                                  | $\frac{1}{10} = \frac{1}{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                 |                       |  |  |  |  |  |
| 35.    | Four married couples have gathered in a room. Two persons are selected at random amongst<br>them, find the probability that selected persons are a centleman and a lady but not a couple |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                 |                       |  |  |  |  |  |
|        | Dec-2011                                                                                                                                                                                 | probability that selected pe                                                                                                                                                                                                      | rsons are a gentieman a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                 | ouple.                |  |  |  |  |  |
|        | a) 1/7                                                                                                                                                                                   | b) 3/7                                                                                                                                                                                                                            | c) 1/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | d) 3/8                                                          |                       |  |  |  |  |  |
|        | Answer:                                                                                                                                                                                  |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                 |                       |  |  |  |  |  |
|        | ( <b>b</b> ) Total                                                                                                                                                                       | person = 4 married couples                                                                                                                                                                                                        | $=4\times 2=8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                 |                       |  |  |  |  |  |
|        | Two j<br>Event                                                                                                                                                                           | Event(A) = Selected persons are a gentle man and a lady, but not couple.                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                 |                       |  |  |  |  |  |
|        | $n(A) = {}^{4}C_{1} \times {}^{3}C_{1}$                                                                                                                                                  |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                 |                       |  |  |  |  |  |
|        | P(A)                                                                                                                                                                                     | $=\frac{n(A)}{(A)}=\frac{4\times 3}{4\times 3}=\frac{3}{4}$                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                 |                       |  |  |  |  |  |
| 36.    | Lat A and P                                                                                                                                                                              | n(S) = 28 = 7                                                                                                                                                                                                                     | where $\mathbf{S}$ such that $\mathbf{P}(\mathbf{A})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $-\frac{1}{2}$ , $D(\overline{P}) - \frac{5}{2}$ , $D(\Lambda)$ | $(1 R) = \frac{3}{2}$ |  |  |  |  |  |
|        | Let A and B                                                                                                                                                                              | two events in a sample sp                                                                                                                                                                                                         | ace S such that $\Gamma(A)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $-\frac{1}{2}, r(D) - \frac{1}{8}, r(A)$                        | $(0 B) = \frac{1}{4}$ |  |  |  |  |  |
|        | (a) $3/4$                                                                                                                                                                                | (b) 1/4                                                                                                                                                                                                                           | (c) $3/16$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (d) None of                                                     | these.                |  |  |  |  |  |
|        | Answer:                                                                                                                                                                                  |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (4) 1 (6) (6)                                                   |                       |  |  |  |  |  |
|        | ( <b>b</b> ) Given $P(A) = \frac{1}{2}$ , $P(B) = \frac{5}{4}$ and $P(A \cup B) = \frac{3}{4}$ then we know that                                                                         |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                 |                       |  |  |  |  |  |
|        | P(Ā (                                                                                                                                                                                    | $\int \overline{B} = P(\overline{A \cup B})$                                                                                                                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                 |                       |  |  |  |  |  |
|        |                                                                                                                                                                                          | = 1 - P(AUB)                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                 |                       |  |  |  |  |  |
|        |                                                                                                                                                                                          | $=1-\frac{3}{4}$                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                 |                       |  |  |  |  |  |
|        |                                                                                                                                                                                          | $=\frac{1}{4}$                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                 |                       |  |  |  |  |  |
| 37.    | A card is draw                                                                                                                                                                           | vn out of a standard pack of                                                                                                                                                                                                      | f 52 cards. What is the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | probability of drawi                                            | ng a king             |  |  |  |  |  |
|        | or red colour ?                                                                                                                                                                          | )                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Jı                                                              | ine-2012              |  |  |  |  |  |
|        | (a) 1/4                                                                                                                                                                                  | (b) 4/13                                                                                                                                                                                                                          | (c) 7/13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (d) 1/2                                                         |                       |  |  |  |  |  |
|        | Answer: $(c) \land Car$                                                                                                                                                                  | d is drawn out of a standard                                                                                                                                                                                                      | I nack of 52 cards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                 |                       |  |  |  |  |  |
|        | Then                                                                                                                                                                                     | a is drawn out of a standard                                                                                                                                                                                                      | <sup>1</sup> puer of <i>32</i> calus,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                 |                       |  |  |  |  |  |
|        | Samp                                                                                                                                                                                     | ble space n (s) = ${}^{52}C_1 = 52$                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                 |                       |  |  |  |  |  |
|        | Event                                                                                                                                                                                    | t(A) = King or Red Colour                                                                                                                                                                                                         | r'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                 |                       |  |  |  |  |  |
n (A) = 4 + 24  
= 28  
Probability P (King or Red Colour) = 
$$\frac{n(A)}{n(S)}$$
  
=  $\frac{28}{52}$   
=  $\frac{7}{13}$ 

38. A player tosses two fair coins, he wins ₹ 5 if 2 heads appear, ₹ 2 if one head appears and ₹ 1 if no head occurs. Find his expected amount of winning.
(a) 2.5
(b) 3.5
(c) 4.5
(d) 5.5

Answer:

(a) For tossed two coins, the prob. distribution of getting head.

| x <sub>1</sub> :            | 0 | 1 | 2 |
|-----------------------------|---|---|---|
| $P(x_1):$                   | 1 | 1 | 1 |
|                             | 4 | 2 | 4 |
| Getting amount(Rs,) $m_1$ : | 1 | 2 | 5 |

Expected Amount of winning

$$E(x) = \sum m_1 P(x_1)$$
  
= m<sub>1</sub> P(x<sub>1</sub>) + m<sub>2</sub> P(x<sub>2</sub>) + m<sub>3</sub> P(x<sub>3</sub>)  
= 1 ×  $\frac{1}{4}$  + 2 ×  $\frac{1}{2}$  + 5 ×  $\frac{1}{4}$   
= 0.25 + 1 + 1.25  
= Rs. 2.50

**39.** A company employed 7 CA's, 6 MBA's and 3 Engineer's. In how many ways the company can form a committee, if the committee has two members of each type. June-2012 (a) 900 (b) 1,000 (c) 787 (d) 945

40. Two dice are thrown together. Find the probability of getting a multiple of 2 on one dice and multiple of 3 on the other.
(a) 2/3
(b) 1/6
(c) 1/3
(d) None of the above

Answer:

- (b) Two dice are thrown together Sample space n(S) = 36 Event 'E' = 'getting a multiply of 2 on the 1<sup>st</sup> Die and multiple of 3 on the <sup>lind</sup>die'. = {(2,3) (2,6) (4,3) (4,6) (6,3) (6,6)} n(E) = 6 p(E) =  $\frac{n(E)}{n(S)} = \frac{6}{36} = \frac{1}{6}$
- **41.** The odds against A solving a certain problem are 4 to 3 and the odds in favour of B solving the same problem are 7 to 5. **Dec-2012**

What is the probability that the problem will be solved if they both try? (a) 15/21 (b) 16/21 (c) 17/21 (d) 13/21

Answer:

(b) The odd against A solving a certain problem = 4:3 P (A) = Prob (Solve the problem) =  $\frac{3}{4+3} = \frac{3}{7}$ P ( $\overline{A}$ ) = Prob (not solve the problem) =  $\frac{4}{4+3} = \frac{4}{7}$ The odds in favour of B solving the same problem = 7:5 P(B) = Prob(solve the problem) =  $\frac{7}{7+5} = \frac{7}{12}$ P(B) = Prob (not solve the problem) =  $\frac{5}{7+5} = \frac{5}{12}$ Probability (Both are not solved the problem) = P( $\overline{A} \cap \overline{B}$ ) = P( $\overline{A} \cap \overline{B}$ )

$$=\frac{4}{7}\times\frac{5}{12}=\frac{5}{21}$$

Probability (problem is solved) =  $1 - \frac{5}{21}$ =  $\frac{16}{21}$ 

| 42 | If $P(\Delta) = 0.45$ | $P(B) = 0.35$ and $P(\Delta \& B) =$ | 0.25 then $P(\Delta/B) - 2$           |           | Dec-2013 |
|----|-----------------------|--------------------------------------|---------------------------------------|-----------|----------|
|    | $\Pi \Pi (H) = 0.73$  | (10) = 0.55  and  1(100) =           | $(1.25, \text{then } \Gamma(A/D) = :$ |           | DCC-2013 |
|    | (a)1.4                | (b)1.8                               | (c) 0.714                             | (d) 0.556 |          |

**43.** The probability of a cricket team winning match at Kanpur is 2/5 and losing match at Delhi is<br/>1/7 what is the Probability of the term winning atleast one match?Dec-2013<br/>(a) 3/35(a) 3/35(b) 32/35(c) 18/35(d) 17/35

Answer:

(**b**) Prob. of losing a match at Kanpur =  $1 - \frac{2}{5} = \frac{3}{5}$ 

- Prob. of winning at least one match =
- 1 Prob. of losing both the matches

$$= 1 - \frac{3}{5} \times \frac{1}{7} = \frac{32}{35}$$

**44.** Find the expected value of the following probability distribution. **Dec-2013** X: -20 -10 30 75 80 P(x): 3/201/51⁄2 1/101/20 (a) 20.5 (b) 21.5 (c) 22.5 (d) 24.5 **Answer: (b)** -20 -10 30 75 80 Х P(x)3/201/51/101/20 $\frac{1}{2}$ Expected value  $E(x) = \sum p_i x_i$  $= p_{i}x_{i} + p_{2}x_{2} + p_{3}x_{3} + p_{4}x_{4} + p_{5}x_{5}$ =  $\frac{3}{20} \times (-20) + \frac{1}{5} \times (-10) + \frac{1}{2} \times 30 + \frac{1}{10} \times 75 + \frac{1}{20} \times 80$ = -3 -2 +15 +7.5 +4 = 21.545. Two coins are tossed simultaneously. Find the probability of getting exactly one head Dec-2013 (a) 3/4(b) 2/3(c) 1/4 (d) 1/2Answer: (d) Two coins are tossed Sample Space  $(S) = \{HH, HT, TH, TT\}$ n(S) = 4A = `Exactly are head'A = HT, THn(A) = 2P(exactly are head) =  $\frac{n(A)}{n(S)} = \frac{2}{4} = \frac{1}{2}$ 46. An unbiased die is thrown twice. The probability of the sum of numbers obtained on the sum of numbers obtained on the two faces being divisible by 4 is: Dec - 2014 a) 7/36 d) 1/4 b) 1/3 c) 11/36 47. A discrete random variable X takes three values -1, 2 and 3 with probabilities Dec - 2014  $p(-1) = \frac{1}{3}$ ,  $p(2) = \frac{1}{3}$ ,  $p(3) = \frac{1}{3}$ , then E(|X|) is : a) 3/2 b) 5/2 c) 2 d) 9/2 **Answer:** (c) Given, -1 1/2 -2 X<sub>i</sub>: -3

P<sub>i</sub>: 
$$1/3 1/3 1/3 1/3$$
  
E(|x|) =  $\sum p_i |x|_i$   
=  $p_1 |x_1| + |p_2|x_2| + p_3 |x_3|$ 

Probability

37.8

|            | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $=\frac{1}{2} -1 +\frac{1}{2} 2 +\frac{1}{2}$                   | 3                                                           |                                     |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------|
|            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $=\frac{1}{-1} \times 1 + \frac{1}{-1} \times 2 + \frac{1}{-1}$ | x 3                                                         |                                     |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 3 \\ 1 \\ 2 \\ 3 \end{array}$                 |                                                             |                                     |
|            | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $=\frac{-}{3}+\frac{-}{3}+\frac{-}{3}$                          |                                                             |                                     |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $=\frac{6}{2}$                                                  |                                                             |                                     |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $=\frac{3}{2}$                                                  |                                                             |                                     |
| <b>48.</b> | An unbiased coin is t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ossed three times. T                                            | he expected value of th                                     | e number of heads is June-          |
|            | 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                 |                                                             |                                     |
|            | a) 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | b) 1.0                                                          | c) 1.5                                                      | d) 2.0                              |
| 49.        | If an unbiased die is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | rolled once, the odd                                            | s in favour of getting a                                    | point which is multiple of 3 is     |
|            | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 > 2 = 1                                                       | ) 1 2                                                       | Dec - 2015                          |
|            | a) 1 : 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | b) 2 : 1                                                        | c) 1 : 3                                                    | d) 3 : 1                            |
|            | (a) One die is R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Polled                                                          |                                                             |                                     |
|            | (a) One ute is r<br>Sample spa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\operatorname{heat}$                                           |                                                             |                                     |
|            | Event(A) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = 'getting no. which                                            | is multiple of 3'                                           |                                     |
|            | ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = {3,6}                                                         |                                                             |                                     |
|            | n(A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | =2                                                              |                                                             |                                     |
|            | P(A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $=\frac{n(A)}{2}=\frac{2}{2}=\frac{1}{2}$                       | <u>.</u>                                                    |                                     |
|            | Odd in fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n(S) 6 3                                                        | $\mathbf{D}(\mathbf{A}) \cdot \mathbf{D}(\bar{\mathbf{A}})$ |                                     |
|            | Odd III fa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | vour of an events $=$ 1                                         | P(A) : P(A)                                                 |                                     |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | =                                                               | $\frac{-3}{3}$ : $(1 - \frac{-3}{3})$                       |                                     |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | =                                                               | $\frac{1}{2}$ : $\frac{2}{2}$                               |                                     |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | =                                                               | 1:2                                                         |                                     |
| <b>50.</b> | A bag contains 15 or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ne rupee coins, 25 tv                                           | wo rupees coins and 10                                      | five rupees coins, if a coin is     |
|            | selected at random th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | an probability for no                                           | ot selecting a one rupee                                    | coin is : <b>Dec - 2015</b>         |
|            | a) 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | b) 0.20                                                         | c) 0.25                                                     | d) 0.70                             |
|            | Answer:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15 05                                                           | 10                                                          |                                     |
|            | ( <b>d</b> ) Total No. of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | coms = 15 + 25 + 1                                              | 10                                                          |                                     |
|            | Sample Spa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = 30                                                            |                                                             |                                     |
|            | Event 'A'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | = 'not getting one                                              | Runee coins'                                                |                                     |
|            | n(A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | = 25 + 10                                                       | Rupee coms                                                  |                                     |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = 35                                                            |                                                             |                                     |
|            | $P(\Delta)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $-\frac{n(A)}{2}-\frac{35}{2}=0.7$                              |                                                             |                                     |
|            | 1 (71)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $-\frac{1}{n(S)}$ $-\frac{1}{50}$ $-\frac{1}{50}$               |                                                             | 1: D 0015                           |
| 51.        | Three coins are toget                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | her, the probability $\frac{3}{2}$                              | of getting exactly two h                                    | ead is : Dec - 2015                 |
|            | a) $\frac{-}{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | b) $\frac{-}{8}$                                                | c) $\frac{-}{8}$                                            | d) None                             |
|            | Answer:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                 |                                                             |                                     |
|            | (b) Three coins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | are tossed                                                      |                                                             |                                     |
|            | then Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $e \text{ Space } S = \{\text{HHH}, \\ m(S) = 8 \}$             | HHI, HIH, HII, II                                           | , 11H, 1H1, 1HH}                    |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\Pi(S) = O$<br>Event $(\Delta) = Gettin$                       | ng Exactly two head'                                        |                                     |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HH                                                              | T. HTH. THH}                                                |                                     |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n(A) = 3                                                        | ,,                                                          |                                     |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $P(A) = \frac{n(A)}{a}$                                         | 3                                                           |                                     |
| 50         | If the second se | n(S) = n(S)                                                     | 8                                                           | (in the second -1, 11) - 41 (c) (c) |
| 52.        | II two letters are take                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | in at random from th                                            | e word "HOME", what                                         | is the probability that none of     |
|            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                 | 、1                                                          | Dec - 2015                          |
|            | $a) - \frac{1}{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | b) $\frac{1}{2}$                                                | c) $\frac{-}{3}$                                            | a) $\frac{1}{4}$                    |
|            | Answer:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | HOME'                                                           |                                                             |                                     |
|            | (a) Given word                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                 |                                                             |                                     |
|            | n two letter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | s are taken then                                                |                                                             |                                     |

Sample Space n(S) = 
$${}^{4}C_{2}$$
  
=  $\frac{4 \times 3}{2 \times 1} = 6$   
Event(A) 'none of the letters would be Vowels'  
n(A) =  ${}^{2}C_{2} = 1$   
P(A) =  $\frac{n(A)}{n(S)} = \frac{1}{6}$ 

53. In a game, cards are thoroughly shuffled and distributed equally among four players. What is the probability that a specific player gets all the four kings ?June - 2016

a) 
$$\frac{{}^{13}C_4 \times {}^{48}C_{13}}{{}^{53}C_{13}}$$
 b)  $\frac{{}^{4}C_4 \times {}^{48}C_9}{{}^{52}C_{13}}$  c)  $\frac{{}^{13}C_4 \times {}^{54}C_4}{{}^{52}C_{13}}$  d)  $\frac{{}^{4}C_4 \times {}^{39}C_9}{{}^{52}C_{13}}$ 

Answer:

(b) In a game, cards are thoroughly shuffled and distributed equally among four players. Sample space  $n(s) = {}^{52}C_{13}$ 

Event(A) = 'a specific player gets all four king'

n(A) = 
$${}^{4}C_{4} \times {}^{48}C_{9}$$
  
Probability P(A) =  $\frac{n(A)}{n(S)}$   
=  $\frac{C_{4}^{4} \times C_{9}^{48}}{C_{12}^{52}}$ 

54. A bag contains 4 Red and 5 Black balls. Another bag contains 5 Red and 3 Black balls. If one ball is drawn at random from each bag. Then the probability that one Red and one Black drawn is -:

a) 
$$\frac{12}{72}$$
 b)  $\frac{25}{72}$  c)  $\frac{37}{72}$  d)  $\frac{13}{72}$   
Answer:  
(c) | 4 Red  
5 Black = 9  
Bag - I | 5 Red  
3 Black = 8  
Bag - II

Require Probability = P(one Red from the  $I^{st}$  bag and one Black ball from the  $II^{nd}$  bag) + P(one Red

ball from the II<sup>nd</sup> bag and one Black ball from the I<sup>st</sup> bag)  
= P(R<sub>1</sub> ∩ B<sub>2</sub>) + P(R<sub>2</sub> ∩ B<sub>1</sub>)  
= P(R<sub>1</sub>) · P(B<sub>2</sub>) + P(R<sub>2</sub>) · P(B<sub>1</sub>)  
= 
$$\frac{4}{9} \cdot \frac{3}{8} + \frac{5}{8} \cdot \frac{5}{9}$$
  
=  $\frac{12}{72} + \frac{25}{72}$   
=  $\frac{37}{72}$   
55. If P(A) =  $\frac{2}{3}$ , P(B) =  $\frac{3}{5}$  and P(A∪B) =  $\frac{5}{6}$  then P $\left(\frac{A}{B^1}\right)$  is June - 2016  
a)  $\frac{7}{12}$  b)  $\frac{5}{12}$  c)  $\frac{1}{4}$  d)  $\frac{1}{2}$   
56. If two unbiased dice are rolled, what is the probability of getting sum of points neither 3 or 6?  
June - 2016  
a) 0.25 b) 0.50 c) 0.75 d) 0.80  
Answer:  
(d) If two dice are rolled then  
Sample space n(s) = 36  
Event 'A' = 'getting sum is either 3 or 6'  
n(A) = 36 - 7  
= 29  
P(A) =  $\frac{n(A)}{n(S)} = \frac{29}{36} = 0.80$ 

57. Two dice are tossed. What is the probability that the total is divisible by 3 or 4. June - 2016

**Probability** 37.10 **GOPAL BHOOT** a)  $\frac{20}{36}$ b)  $\frac{21}{36}$ c)  $\frac{14}{36}$ d) None of these. Answer: (a) If two dice are rolled Sample Space n(s) = 36= 'The total sum is divisible by 3 or 4' Event 'A'  $= \{(1,2), (2,1), (5,1), (1,5), (3,3), (4,2), (2,4), (4,5), (5,4), (6,3), (3,6)\}$ (6,6)(1,3)(3,1)(2,2)(6,2)(2,6)(5,3)(3,5)(4,4)n(A) = 20P(A)  $=\frac{n(A)}{n(B)}=\frac{20}{36}$ If two events A, b  $P(A) = \frac{1}{2}$ ,  $P(B) = \frac{1}{3}$  and  $(A \cup B) = \frac{2}{3}$  then  $P(A \cap B)$  is : a) 1/4 b) 1/6 c) 2/3 d) 1/2**58. Dec-2016** d) 1/2 **Answer: (b)**  $P(A) = \frac{1}{2}$ ,  $P(3) = \frac{1}{3}$ ,  $P(A \cap B) = ?$  $P(A \cup B) = \frac{2}{2}$ We know that  $P(A \cup B) = P(A) + P(B) - P(A \cap B)$  $\frac{2}{3} = \frac{1}{2} + \frac{1}{3} - P(A \cap B)$  $P(A \cap B) = \frac{1}{2} + \frac{1}{3} - \frac{2}{3}$  $P(A \cap B) = \frac{3+2-4}{6}$  $P(A \cap B) = \frac{1}{2}$ 59. A bag contains 6 white and 5 red balls. One ball is drawn. The probability that is drawn. The probability that it is red is : **Dec-2016** c) 1/11 a) 5/11 d) None of these b) 6/11 Answer: (a) Total ball in the bag = 6W + 5R= 11If one ball is drawn from the bag then sample space  $n(s) = 11C_1 = 11$ Event (A) ='getting ball is Red'  $= 5C_1$ n(A) = 5P(A)  $=\frac{n(A)}{n(S)}=\frac{5}{11}$ 60. For two events, A, B let  $P(A) = \frac{2}{3}$ ,  $P(B) = \frac{3}{8}$  and  $p(A \cap B) = \frac{1}{4}$  then A and B are : **Dec-2016** b) Independent but not mutually exclusive a) Mutually exclusive but not independent c) Mutually exclusive and independent d) None of these **Answer: (b)** Given  $P(A) = \frac{2}{3}$ ,  $P(B) = \frac{3}{8}$ ,  $P(A \cap B) = \frac{1}{4}$  $P(A) \times P(B) = \frac{2}{3} \times \frac{3}{8} = \frac{2}{8} = \frac{1}{4}$  $P(A \cap B) = \frac{1}{4}$ so,  $P(A \cap B) = P(A) \cdot P(B)$ so, A and B are Independent but not mutually exclusive. Let A and B are two events  $P(A) = \frac{2}{3}$ ,  $P(B) = \frac{1}{4}$  and  $P(A \cap B) = \frac{1}{12}$ , then P(B/A) will be: **61. June-2017** a) 7/8 b) 1/3 c) 1/8 d) 8/7 Answer: (c) Given,  $P(A) = \frac{2}{3}$ ,  $P(B) = \frac{1}{4}$  and  $P(A \cap B) = \frac{1}{12}$ 

|     | P(B/A) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\frac{P(A \cap B)}{P(A)} = -$          | $\frac{\frac{1}{12}}{\frac{1}{2}} = \frac{1}{12} \times \frac{3}{2}$ | $=\frac{1}{8}$           |                                              |                       |                                  |                       |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------|--------------------------|----------------------------------------------|-----------------------|----------------------------------|-----------------------|
| 62. | For any two events A<br>a) $P(A - B) = P(A)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | and B;<br>-P(B)                         | 3 12 2                                                               | о<br>b)                  | P(A-B)                                       | = P(A) -              | $-P(A \cap B)$                   | <b>June-2017</b>      |
|     | c) $P(A - B) = P(B)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $-P(A \cap B)$                          | )                                                                    | d) .                     | P(B-A)                                       | = P(B) -              | $+ P(A \cap B)$                  | )<br>?)               |
|     | Answer:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         | -                                                                    |                          |                                              |                       |                                  |                       |
|     | ( <b>b</b> ) If A & B two                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | events                                  |                                                                      |                          |                                              |                       |                                  |                       |
|     | P(A-B) = P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $A \cap B$                              |                                                                      |                          |                                              |                       |                                  |                       |
|     | $= \mathbf{P}(\mathbf{x})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $A) - P(A \cap B)$                      | 3)                                                                   |                          | 2                                            |                       | 2                                |                       |
| 63. | If for two mutually                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | exclusive e                             | vents A an                                                           | d B P(A                  | $\cup B) = \frac{2}{5}a$                     | and P(A)              | $=\frac{2}{5}$ then              | what is the           |
|     | value of P (B)? <b>Dec-</b> 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2017                                    |                                                                      |                          | 5                                            |                       | 7                                |                       |
|     | (a) $\frac{4}{15}$<br>Answer:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (b) $\frac{4}{9}$                       |                                                                      | (c)                      | 9                                            |                       | (d) $\frac{7}{15}$               |                       |
|     | (a) Given P(AU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $(3) = \frac{2}{3}, P(A)$               | $) = \frac{2}{\pi}$                                                  |                          |                                              |                       |                                  |                       |
|     | A and B are<br>P(AUB) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e two mutua<br>P(A) + P(B)              | <sup>5</sup><br>Illy exclusiv<br>) - P(A∩B)                          | ve events                | then P(A∩                                    | (B) = 0               |                                  |                       |
|     | $\frac{2}{2} = \frac{2}{2} + \frac{2}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | P(B) = 0                                | , , , , ,                                                            |                          |                                              |                       |                                  |                       |
|     | 3 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 10-6                                  | 4                                                                    |                          |                                              |                       |                                  |                       |
|     | $P(B) = \frac{1}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $-\frac{1}{5} = \frac{1}{15}$           | $=\frac{1}{15}$                                                      |                          |                                              |                       |                                  |                       |
| 64. | The probability distri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | bution of th                            | e demand f                                                           | or a com                 | nodity is g                                  | iven belo             | w:                               | <b>Dec-2017</b>       |
|     | Demand (x)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5                                       | 6                                                                    | 7                        | 8                                            | 3                     | 9                                | 10                    |
|     | Probability [P(x)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.05                                    | 0.10                                                                 | 0.30                     | ) 0.4                                        | 40                    | 0.10                             | 0.05                  |
|     | The expected value o $(a)$ 7.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (b) 7.85                                | 111 be :                                                             | (a)                      | 1.25                                         |                       | $(d) \ 8 \ 25$                   |                       |
|     | (a) 7.55<br>Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (0) 7.85                                |                                                                      | (C)                      | 1.23                                         |                       | (u) 0.55                         |                       |
|     | (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |                                                                      |                          |                                              |                       |                                  |                       |
|     | Given                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         | X1                                                                   | <b>X</b> 2               | X3                                           | <b>X</b> 4            | X5                               | X6                    |
|     | Demand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (x)                                     | 5                                                                    | 6                        | 7                                            | 8                     | 9                                | 10                    |
|     | Probabi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | lity P(x)                               | 0.05                                                                 | 0.10                     | 0.30                                         | 0.40                  | 0.10                             | 0.05                  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | <b>P</b> <sub>1</sub>                                                | $P_2$                    | <b>P</b> <sub>3</sub>                        | <b>P</b> <sub>4</sub> | P5                               | P <sub>6</sub>        |
|     | Expected Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |                                                                      |                          |                                              |                       |                                  |                       |
|     | $E_{x}$ = $\sum P_{1} x_{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |                                                                      |                          |                                              |                       |                                  |                       |
|     | $= P_1 x_1 + P_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $x_2 + P_3 x_3 +$                       | $+ P_4 x_4 + P_5 x_4$                                                | $x 5 + P_6 x$            | 6                                            |                       |                                  |                       |
|     | $= 0.05 \times 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $5 + 0,10 \times 6$                     | $+0,30 \times 7$                                                     | $+$ 0.40 $\times$        | $8 + 0,10 \times$                            | 9 + 0.05              | $\times 10$                      |                       |
|     | = 0.25 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.60 + 2.10                             | +3.20+0                                                              | .90 + 0.50               | )                                            |                       |                                  |                       |
| 65  | = 7.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                       |                                                                      | 1                        |                                              |                       |                                  |                       |
| 05. | Given $P(A) = \frac{1}{2}$ , $P(B)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $=\frac{1}{3}$ and P(                   | $(A \cap B) = \frac{1}{2}$                                           | $\frac{1}{4}$ , the valu | e of P(A/E                                   | <b>B</b> ) is         |                                  | Dec-2017              |
|     | a) 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | b) 1/6                                  |                                                                      | c) 2                     | 2/3                                          |                       | d) 3/4                           |                       |
|     | (d) Given                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                                                                      |                          |                                              |                       |                                  |                       |
|     | (u)  Orven                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\mathbf{D}$ ) <sup>1</sup> and         | $\mathbf{D}(\mathbf{A} \circ \mathbf{D})$                            | 1                        |                                              |                       |                                  |                       |
|     | $P(A) = \frac{1}{2}, P(A) = \frac{1}{$ | $B) = \frac{1}{3}$ and $\frac{1}{4}$    | $P(A \cap B) = 1$                                                    | 4                        |                                              |                       |                                  |                       |
|     | $P(A/B) = \frac{P(A)}{P}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\frac{A(B)}{B(B)} = \frac{1/4}{1/3} =$ | $=\frac{1}{4}\times\frac{3}{1}=\frac{3}{4}$                          |                          |                                              |                       |                                  |                       |
| 66. | If a brother and a si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ster are app                            | blied for 2                                                          | vacancies                | s in the sa                                  | me post.              | The prob                         | ability that          |
|     | heathan will calcot in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1/7 and the                             | t of sister i                                                        | s $1/5$ , the            | n the prob                                   | ability the           | at (i) Both                      | will select           |
|     | brother will select is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1/7 and tha                             |                                                                      |                          | i une proo                                   |                       |                                  | will beleet           |
|     | (ii) Only one will sele                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ect, (iii) Nor                          | the of them $\frac{1}{7}$                                            | will select              | 2 24 11                                      |                       | 24 6                             | <b>Dec-2017</b>       |
|     | (ii) Only one will select is<br>(a) $\frac{1}{35}, \frac{10}{35}, \frac{24}{35}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (b) $\frac{24}{35}, \frac{24}{35}$      | the of them $\frac{7}{5}, \frac{14}{35}$                             | will select<br>(c)       | $\frac{3}{35}, \frac{24}{35}, \frac{11}{35}$ |                       | $(d)\frac{24}{35},\frac{6}{35},$ | Dec-2017              |
|     | (ii) Only one will select is<br>(a) $\frac{1}{35}$ , $\frac{10}{35}$ , $\frac{24}{35}$<br>Answer:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (b) $\frac{24}{35}, \frac{7}{3}$        | the of them $\frac{7}{5}, \frac{14}{35}$                             | will select<br>(c)       | $\frac{3}{35}, \frac{24}{35}, \frac{11}{35}$ |                       | $(d)\frac{24}{35},\frac{6}{35},$ | Dec-2017<br>20<br>35  |
|     | (ii) Only one will select is<br>(ii) Only one will select (a) $\frac{1}{35}, \frac{10}{35}, \frac{24}{35}$<br><b>Answer:</b><br>(a) Given                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (b) $\frac{24}{35}$ , $\frac{7}{3}$     | he of them $\frac{7}{5}, \frac{14}{35}$                              | will select<br>(c)       | $\frac{3}{35}, \frac{24}{35}, \frac{11}{35}$ |                       | $(d)\frac{24}{35},\frac{6}{35},$ | <b>Dec-2017</b> 20 35 |

Probability of brother's 'not selection'  $P(\bar{A}) = \frac{6}{\pi}$ Probability of brother's selection  $P(B) = \frac{1}{r}$ Probability of sister's not selection P(B) =  $1 - \frac{1}{5} = \frac{4}{5}$ (i) Probability of both selected =  $P(A \cap B)$ = P(A), P(B) $=\frac{1}{7} \times \frac{1}{5} = \frac{1}{35}$  $= P(A \cap B) + P(B \cap A)$ (ii) P (only one is selected)  $= P(A), P(\overline{B}) + P(B), P(\overline{A})$  $=\frac{1}{7} \times \frac{4}{5} + \frac{1}{5} \times \frac{6}{7}$ (iii) P(none of them is selected) =  $P(\overline{A} \cap B)$  $= P(\bar{A}) \cdot P(B)$  $=\frac{6}{7}\times\frac{4}{5}=\frac{24}{35}$ 67. Two broad divisions of probability are: **May-2018** (a) Subjective probability and objective probability (b) Deductive probability and mathematical probability (c) Statistical probability and mathematical probability (d) None of these The term "chance" and probability are synonyms: **68**. **May-2018** (a) True (b) False (d) None (c). Both **69**. The theorem of compound probability states that for any two events A and B **May-2018** (b)  $P(A \cup B) = P(A) \times P(B/A)$ (a)  $P(A \cap B) = P(A) \times P(B/A)$ (c)  $P(A \cap B) = P(A) \times P(B)$ (d)  $P(A \cup B) = P(A) + P(B) P(A \cap B)$ **Answer:** (a) The theorem of compound probability states that for only two events A and B given by  $P(A \cap B) = P(A) \times P(B/A)$ 70. Variance of a random variable x is given by **May-2018** (c)  $E(X^2 - \mu)$  (d) (a) or (b) (a)  $E(X - \mu)^2$ (b)E  $[X - E(X)]^2$ **Answer:** (d) Variance of a random variable x is given by  $V(x) = E(X-\mu)^2$ or  $V(x) = [E(X - E(x))]^2$ 71. If two random variables x and y are related by y = 2 - 3x, then the SD of y is given by May-2018 (a)  $-3 \times SD$  of  $\times$ (b)  $3 \times SD$  of  $\times$ (c)  $9 \times SD$  of  $\times$ (d)  $2 \times SD$  of  $\times$ **Answer:** (**b**) Given Equation y = 2 - 3x3x + y - 2 = 0b =  $\frac{-Coefficient of x}{Coefficient of y} = \frac{-3}{1} = -3$ S.D. of y = |b| S.D of X  $= |-3| \cdot S.D$  of x  $= 3 \times S.D$  of x 72. Sum of all probabilities mutually exclusive and exhaustive events is equal to **May-2018** (a) 0(c) 1/4 (d) 1 (b) 1/2Answer: (d) Sum of all probabilities mutually exclusive and exhaustive events is equal to 1.

**73.** If,  $P(A) = \frac{1}{2}$ ,  $P(B) = \frac{1}{3}$ , and  $P(A \cap B) = \frac{1}{4}$ , then  $P(A \cup B)$  is equal to **Nov-2018** 

(b)  $\frac{10}{12}$ (a)  $\frac{11}{12}$  $(c)\frac{7}{12}$  $(d)\frac{1}{\epsilon}$ Answer: (c) Given:  $P(A) = \frac{1}{2}, P(B) = \frac{1}{3}, P(A \cap B) = \frac{1}{4}$ We know that  $P(A \cup B) = P(A) + P(B) - P(A \cap B)$  $=\frac{\frac{1}{2}+\frac{1}{3}-\frac{1}{4}}{=\frac{6+4-3}{12}}$ 74. Ram is known to hit a target in 2 out of 3 shots where as Shyam is knows to hit the same target in 5 out of 11 shots. What is the probability that the target would be hit if they both try? Nov-2018 (a)  $\frac{9}{11}$  $(c)\frac{10}{22}$ (b)  $\frac{3}{11}$  $(d) \frac{6}{11}$ Answer: (a) Let A be the event that Ram hits the target. Let B be the event that Shyam hits the target. Then,  $P(A) = \frac{2}{3}$ ; and  $P(B) = \frac{5}{11}$ Since both are independent events,  $P(A \cap B) = P(A) \times P(B)$ Therefore,  $P(A \cap B) = \frac{2}{3} \times \frac{5}{11} = \frac{10}{33}$ Now, the probability that the target would be hit by at least one of them is given by P(AUB). We know that  $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ Therefore,  $P(A \cup B) = \{\frac{2}{3} + \frac{5}{11}\} - \frac{10}{33} = 0.8181$ Now, try the options: Option (a)  $\frac{9}{11}$ On calculator, we find that  $\frac{9}{11} = 0.8181$ . Therefore, option(a) is the answer. 75. Two different dice are thrown simultaneously, that the sum of two numbers appearing on the top of dice is 9 is Nov-2018

(b)  $\frac{1}{2}$ 

(a)  $\frac{8}{9}$ 

(c)  $\frac{7}{2}$ 

(d) None of the above

Answer:

(b) If two dice are Rolled then Sample space  $n(s) = 6^2 = 36$ Event (A) = Getting the sum is '9' $= \{(6,3) (3,6) (4,5) (5,4)\}$ n(A) = 4 $P(A) = \frac{n(A)}{n(S)} = \frac{4}{36} = \frac{1}{9}$ 76.  $P(A \cup B) = 0.8$  and  $P(A \cap B) = 0.3$ , then  $P(\overline{A}) + P(\overline{B})$  is equal to Nov-2018 (a) 0.3(c) 0.7(b) 0.5 (d) 0.9Answer: (d) Given:  $P(A \cup B) = 0.8$  and  $P(A \cap B) = 0.3$ We know that  $P(A \cup B) = P(A) + P(B) - P(A \cap B)$  $0.8 = [1 - P(\bar{A})] + [1 - P(\bar{B})] - 0.3$  $0.8 = 1 - P(\bar{A}) + 1 - P(\bar{B}) - 0.3$  $P(\bar{A}) + P(\bar{B}) = 2 - 0.3 - 0.8$  $P(\overline{A}) + P(\overline{B}) = 0.9$ 77. If  $Y \ge x$  then mathematical expectation is

**June-2019** 

(d)  $E(X) \cdot E(Y) = 1$ (c) E(X) = E(Y)(a) E(X) > E(Y)(b)  $E(X) \leq E(Y)$ **Answer:** (b) If  $y \ge x$ then  $E(y) \ge E(x)$  $E(x) \leq E(y)$ 78. Two event A and B are such that they do not occurs simultaneously then they are called June-2019. \_ events (b) Mutually exclusive (a) Mutually exhaustive (c) Mutually independent (d) Equally likely **79.** According to bayee's theorem, June-2019.  $P(E_{K}/A) = \frac{P(E_{K}) P(A/E_{K})}{\sum_{1}^{n} P(E_{1}) P(A/E_{1})}$ (a) E<sub>1</sub>, E<sub>2</sub> ..... are mutually exclusive (b)  $P(E/A_1)$ ,  $P(E/A_2)$  ..... are equal to 1 (c)  $P(A_1/E)$ ,  $P(A_2/E)$  ..... are equal to 1 (d) A & E<sub>1</sub>'s are disjoint sets. Answer: (a) According to Bayee' Theorem  $P(E_k/A) = \frac{P(E_k)P(A/E_k)}{\sum_{i=1}^{h} P(E_i) \cdot P(A/E_i)}$ Here,  $E_1, E_2, E_3 \dots$  are Mutually Exclusive. 80. If a coin is tossed 5 times then the probability of getting Tail and Head occurs alternatively is **June-2019**  $(a)\frac{1}{8}$ (b)  $\frac{1}{16}$  $(c)\frac{1}{22}$  $(d)\frac{1}{64}$ **Answer:** (b) P(getting tail and Head occurs Alternative) = P(HTHTH) or P(THTHT) $= \left(\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}\right) + \left(\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}\right)$  $= \frac{1}{32} + \frac{1}{32}$  $= \left(\frac{1+1}{32}\right)$  $= \frac{2}{32}$ 81. When 2 - dice are thrown Simultaneously then the probability of getting at least one 5 is **June-2019** (a)  $\frac{11}{36}$  $(c)\frac{8}{15}$ (b)  $\frac{5}{36}$  $(d)\frac{1}{7}$ **Answer:** (a) If two dice are thrown then sample space n(s) = 36Events 'A' = getting at least one '5' 'A' =  $\begin{bmatrix} (5,1)(5,2)(5,3)(5,4)(5,5)(5,6) \\ (1,5)(2,5)(3,5)(4,5)(6,5) \end{bmatrix}$ n(A) = 11 $p(A) = \frac{n(A)}{n(S)}$  $= \frac{11}{36}$ In Binomial Distribution. Two letters are choosen from the word HOME. What is the probability that the letters choosen 82. Nov-2019 are not vowels. (a)  $\frac{1}{2}$ (b) 1/6(c) 2/3(d) 0

Answer:

(b) HOME

Total letters = 4

Total vowels =  $2 \{O, E\}$ Total Consonants =  $2 \{H,M\}$ P(that 2 letters choosen are not vowels) P(that 2 letters choosen are consonants)  $=\frac{C_2^2}{C_2^4}=\frac{1}{6}$  (Required probability) 83. If A, B, C are three mutually exclusive and exhaustive events such that : Nov-2019 P(A) = 2(B) = 3P(C) what is P(B)? (a) 6/11(b) 3/11(c) 1/6 (d) 1/3Answer: (b) Since A, B, C are mutually exclusive events  $P(A \cap B) = 0, P(B \cap C) = 0, P(C \cap A) = 0$  and  $P(A \cap B \cap C) = 0$ Since A,B, C are mutually exhaustive  $P(A \cup B) = 1$  $P(A \cup B) = P(A) + P(B) + P(C) - P(A \cap B) - P(B \cap C) - P(C \cap A) + P(A \cap B \cap C)$ 1 = P(A) + P(B) + P(C) - 0 - 0 - 0 + 0P(A) + P(B) + P(C) = 1Eq - 1 In given question ; P(A) = 2P(B) = 3P(C)P(A) = 2P(B)Eq - 2and  $P(C) = \frac{2}{3}P(B)$ Eq - 3 Put Eq 2 and 3 in Eq 12P(B) + P(B) +  $\frac{2}{3}$ P(B) = 1  $\frac{11}{3}P(B) = 1$  $P(B) = \frac{3}{11}$ **84.** What is the probability of getting 7 or 11 when two dices are thrown? Nov-2019 (a) 2/9(b) 6/36(c) 10/36(d) 2/36Answer: (a) When two dices are thrown n(S) = 36A Event of getting sum 7 Event of getting sum 11 В А  $\{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)\}$ n(A) = 6B  $\{(5,6), (6,5)\}$ n(B) = 2P (of getting sum 7 or 11) =  $\frac{6+2}{36}$ =  $\frac{8}{36} = \frac{2}{9}$ **85.** A log contains 15 one rupee Coins, 25 two rupee coins and 10 five rupee coins if a coin is selected at random than probability for not selecting a one rupee coin is: Nov-2019 (a) 0.30(b) 0.20 (c) 0.25(d) 0.70 What is the probability of occurring 4 or more than 4 accidents. Nov-2019 86. No. of acc. 2 3 4 5 7 1 6 Frequency 8 17 15 24 27 18 9 (a) 24/118(b) 69/118 (c) 78/118 (d) 80/11887. When 2 fair dice are thrown what is the probability of getting the sum which is a multiple of 3? Nov - 2020 (a) 4/36(b) 13/36 (c) 2/36(d) 12/3688. When two coins are tossed simultaneously the probability of getting at least one tail? Nov-**2020** Ans: (b) (c) 0.5 (a) 1 (b) 0.75 (d) 0.25 **Answer:** (b) If two coins are tossed Then Sample Space  $S = \{HH, HT, TH, TT\}$ 

**Probability** 

**Answer**:

37.16

n(S) = 4Event (A) ='getting at least one tails'  $(A) = \{HT, TH, TT\}$ n(A) = 3 $P(A) = \frac{n(A)}{n(S)} = \frac{3}{4} = 0.75$ 89. When 3 dice are rolled simultaneously the probability of a number on the third die is greater than the sum of the numbers on two dice. Nov - 2020(a) 12/216 (c) 48/216 (b) 36/216 (d) 20/216**Answer:** (d) If three dice are rolled then Sample Space  $n(s) = 6^3 = 216$ Event 'A' = 'getting Nos. on the third die is greater than the sum of the No. of two dice'  $= \{(1,1,3), (1,1,4), (1,1,5), (1,1,6), (1,2,4), (1,2,5), (1,2,6), (1,3,5), (1,3,6), (1,4,6), (2,1,4), (1,1,5), (1,2,6), (1,2,6), (1,3,6), (1,4,6), (2,1,4), (1,1,5), (1,2,6), (1,2,6), (1,3,6), (1,3,6), (1,4,6), (2,1,4), (1,2,6), (1,2,6), (1,2,6), (1,3,6), (1,4,6), (2,1,4), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6), (1,2,6)$ (2,1,5) (2,1,6) (2,2,5) (2,2,6) (2,3,6) (3,1,5) (3,1,6) (3,2,6) (4,1,6)n(A) = 20 $P(A) = \frac{n(A)}{n(S)} = \frac{20}{216}$ 90. If a speaks 75% of truth and B speaks 80% of truth. In what percentage both of them likely contradict with each other in narrating the same questions? Non - 2020 (b) 0.45 (d) 0.35 (a) 0.60(c) 0.65**Answer**: (b)  $P(A) = \frac{75}{100}$ ,  $P(B) = \frac{60}{100}$  $P(\bar{A}) = 1 - P(A) P(B) = 1 - P(B)$  $= \frac{1-75}{100} = \frac{1-60}{100}$  $= \frac{25}{100} = \frac{40}{100}$ P (Both of them are contradict)  $\Rightarrow$  P(A \cap B) or P(B \cap A) = P(A). P(B) + P(B). P(A) $= \frac{75}{100} \times \frac{40}{100} + \frac{60}{100} \times \frac{25}{100}$  $= 0.30 + \overline{0.75}$ = 0.45**91.** An event that can be subdivided into further events is called as. **Jan – 2021** (d) A simple event (a) A composite event (b) A complex event (c) A mixed event 92. Three identical and balanced dice are rolled. The probability that the same number will appear on each of them is. Jan - 2021  $(a)\frac{1}{6}$  $(d)\frac{1}{24}$  $(b)\frac{1}{18}$  $(c)\frac{1}{36}$ Answer: (c) If three identical dice are rolled then no. of sample space n(s)  $= 6^3$ = 216 Event (A) ='getting some Number will appear in each'  $= \{(1,1,1), (2,2,2), (3,3,3), (4.4.4), (5,5,5), (6,6,6)\}$ n(A) = 6 $P(A) = \frac{n(A)}{n(s)} = \frac{6}{216} = \frac{1}{36}$ A basket contains 15 white balls, 25 red balls and 10 blue balls. If a ball is selected at random, **93**. the probability of selecting not a white ball. **Jan - 2021** (b) 0.25 (c) 0.60 (a) 0.20(d) 0.70

| Probabi    | lity                              |                                                                                             | 37.18                                                   | GOPAL BHOOT                                                         |
|------------|-----------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------|
|            | (a) 5/12                          | (b) 12/35                                                                                   | (c) 7/12                                                | (d) 0                                                               |
|            | (c)                               | Total balls in the bag = $7$ Blue                                                           | + 5 green                                               |                                                                     |
|            |                                   | = 12 If one ball in selected then                                                           |                                                         |                                                                     |
|            |                                   | Sample space $n(S) = {}^{12}C$                                                              | 1 = 12                                                  |                                                                     |
|            |                                   | Event (A) = Getting blu<br>n(A) = ${}^{7}C_{1} = 7$                                         | le balls                                                |                                                                     |
|            |                                   | $P(A) = \frac{n(A)}{n(S)} = \frac{7}{12}$                                                   |                                                         |                                                                     |
| <b>99.</b> | The proba                         | ability that a football team loosi                                                          | ng a match at Kolkata is                                | 3/5 and winning a match at                                          |
|            | Bengaluri                         | 1  is  6/7  ; the probability of the                                                        | team winning at least o                                 | ne match is July –                                                  |
|            | (a) 3/35                          | (b) 18/35                                                                                   | (c) 32/35                                               | (d) 17/35                                                           |
|            | Answer:<br>(c) H                  | lere                                                                                        |                                                         |                                                                     |
|            |                                   | $A \rightarrow$ winning the match in Kolkata<br>$B \rightarrow$ winning the match in Bangal | u<br>uru                                                |                                                                     |
|            |                                   | Given $\frac{3}{2}$ P(P) $\frac{6}{2}$                                                      |                                                         |                                                                     |
|            |                                   | $P(A) = \frac{1}{5}, P(B) = \frac{1}{7}$<br>$P(B) = 1 - \frac{6}{7} - 1/7$                  |                                                         |                                                                     |
|            | Р                                 | (Both matches are lossing) = $P(\overline{A} \cap \overline{B})$                            | D                                                       |                                                                     |
|            |                                   | $= P(\bar{A}), P(\bar{A}) = \frac{3}{2} \times \frac{1}{2}$                                 | $\overline{B}$ )                                        |                                                                     |
|            |                                   | $=\frac{5}{3}$ 7                                                                            |                                                         |                                                                     |
|            | Ι                                 | P(at least one match winning)                                                               |                                                         |                                                                     |
|            |                                   | = 1 - P(Both matches a)<br>$- 1 - \frac{3}{2}$                                              | re lossing)                                             |                                                                     |
|            |                                   | $= \frac{32}{35}$                                                                           |                                                         |                                                                     |
| 100.       | If in a cla                       | $^{35}$ ss, 60% of the student study. M                                                     | athematics and science a                                | and 90% of the student study                                        |
|            | science, t                        | hen the probability of a studen                                                             | t studying mathematics                                  | given that he/she is already                                        |
|            | (a) 1/4                           | (b) 2/3                                                                                     | (c) 1                                                   | (d) 1/2                                                             |
|            | Answer:                           | Mathematics A                                                                               |                                                         |                                                                     |
|            | (0)                               | Science $\rightarrow B$                                                                     |                                                         |                                                                     |
|            |                                   | Here $P(A \cap B) = \frac{60}{100} = 0.6$                                                   |                                                         |                                                                     |
|            |                                   | $P(B) = \frac{90}{100} = 0.9$                                                               |                                                         |                                                                     |
|            |                                   | $P(A/B) = P\frac{(A \cap B)}{P(B)} = \frac{0.6}{0.9} = \frac{2}{3}$                         |                                                         |                                                                     |
| 101.       | A biased tail, if the <b>2021</b> | coin is such that the probability<br>coin is tossed 4 times, what is t                      | of getting a head is thric<br>he probability of getting | e the probability of getting a a head all the times ? <b>July</b> – |
|            | (a) 2/5                           | (b) 81/128                                                                                  | (c) 81/256                                              | (d) 81/64                                                           |
|            | Answer:<br>(c) ]                  | Here Probability of success $= p$                                                           |                                                         |                                                                     |
|            |                                   | Probability of failure $= q$                                                                |                                                         |                                                                     |
|            |                                   | Given, $p = 3q$ (1)<br>we know that                                                         |                                                         |                                                                     |
|            |                                   | p + q = 1                                                                                   |                                                         |                                                                     |
|            |                                   | 3q + q = 1                                                                                  |                                                         |                                                                     |

4q = 1

q = 1/4q = 1/4 in eq. (1) weget

|      |                                            | $p = 3 \times \frac{1}{2}$        | <u>1</u><br>4                                         |                                                      |                             |              |                              |                        |
|------|--------------------------------------------|-----------------------------------|-------------------------------------------------------|------------------------------------------------------|-----------------------------|--------------|------------------------------|------------------------|
|      |                                            | p = 3⁄4                           |                                                       |                                                      |                             |              |                              |                        |
|      | Her                                        | the $n = 4$                       |                                                       |                                                      |                             |              |                              |                        |
|      |                                            | p(all He                          | ad) = p(x =                                           | = 4)                                                 |                             |              |                              |                        |
|      |                                            | $= {}^{n}C_{x}$                   | $p^{x} \cdot q^{n-x}$                                 | A A                                                  |                             |              |                              |                        |
|      |                                            | $= {}^{4}C_{4}$                   | $\left(\frac{3}{4}\right)^4 \left(\frac{1}{4}\right)$ | 4-4<br>01                                            |                             |              |                              |                        |
|      |                                            | = 1 ×                             | $(\frac{61}{256} \times 1) =$                         | $=\frac{81}{256}$                                    |                             |              |                              |                        |
| 102. | If there are 16                            | phones, 10                        | of them                                               | are Andro                                            | id and 6 o                  | of them a    | re of App                    | le, then the           |
|      | probability of 4 1<br>2021                 | candomly se                       | lected pho                                            | nes to inclu                                         | ide 2 Andro                 | oid and 2 A  | pple phone                   | e is: <b>July</b> –    |
|      | (a) 0.47                                   | (b)                               | 0.51                                                  |                                                      | (c) 0.37                    |              | (d) 0.27                     |                        |
|      | Answer:                                    |                                   |                                                       |                                                      |                             |              |                              |                        |
|      | (c)                                        |                                   | Total phor                                            | 10 = 16                                              |                             |              |                              |                        |
|      | [                                          |                                   |                                                       |                                                      |                             |              |                              |                        |
|      |                                            |                                   | 10                                                    |                                                      |                             |              | <u> </u>                     |                        |
|      | No. of                                     | android pho                       | ne = 10                                               | 1 .1                                                 | 1 1                         | Nð. (        | of Apples                    | phone = 6              |
|      | If 4 p                                     | hone are set                      | ected at ra                                           | ndom then                                            | sample spla                 | ace $n(S) =$ | $^{10}C_4$                   |                        |
|      | Even                                       | $r(A) = gen (A) = \frac{10}{10}$  | 1  mg 2  And                                          | fold and 2 P                                         | Apples Phot                 | nes          |                              |                        |
|      |                                            | $\Pi(A) = C$                      | $2 \times C_2$                                        |                                                      |                             |              |                              |                        |
|      | Req.                                       | Probability                       | $=\frac{C_2^{16}}{C_4^{16}}$                          |                                                      |                             |              |                              |                        |
|      |                                            |                                   | = 0.37                                                |                                                      |                             |              |                              |                        |
| 103. | The value of K f                           | or the proba                      | bility dens                                           | ity function                                         | n of a variat               | e X is equa  | al to:                       | July-2021              |
|      | X                                          | 0                                 | 1                                                     | 2                                                    | 3                           | 4            | 5                            | 6                      |
|      | P(x)                                       | 5k                                | 3k                                                    | 4k                                                   | бk                          | 7k           | 9k                           | 11k                    |
|      | (a) 39                                     | (b)                               | $\frac{1}{40}$                                        |                                                      | $(c)\frac{1}{49}$           |              | $(d)\frac{1}{45}$            |                        |
|      | Answer:                                    |                                   | 10                                                    |                                                      | 17                          |              | 45                           |                        |
|      | (d) Given                                  |                                   |                                                       |                                                      |                             |              |                              |                        |
|      | х :                                        | 0 1 2                             | 2 3 4                                                 | 56                                                   |                             |              |                              |                        |
|      | P(x):                                      | 5k 3k 4                           | k 6k 7k 9                                             | 9k 11k                                               |                             |              |                              |                        |
|      | In pro                                     | b. distribut                      | ion                                                   |                                                      |                             |              |                              |                        |
|      |                                            | $\sum Pl =$                       |                                                       | 71 . 01 . 1                                          | 11 1                        |              |                              |                        |
|      |                                            | 3K + 3K                           | + 4K+ 6K+<br>51z – 1                                  | /K+ 9K+ I                                            | IK = I                      |              |                              |                        |
|      |                                            | 4                                 | SK = 1<br>K = 1/45                                    |                                                      |                             |              |                              |                        |
| 104  | For any two dan                            | andant ava                        | K = 1/43                                              | $\mathbf{P} \mathbf{D}(\mathbf{\Lambda}) = 4$        | 5/0 and $D(B)$              | (1) = 6/11   | nd $\mathbf{D}(\Lambda \cap$ | P(x) = 10/33           |
| 1040 | What are the value                         | ues of P (A/                      | $(\mathbf{B})$ and $\mathbf{P}$                       | B, I(A) = .<br>B/A)?                                 |                             | () = 0/11 a  |                              | D = 10/33.<br>Dec 2021 |
|      | (a) 5/9, 6/11                              | (b)                               | 5/6. 6/11                                             | <b>D</b> /11) ·                                      | (c) 1/9, 2/9                | )            | (d) 2/9, 4                   | /9                     |
|      | Answer:                                    |                                   |                                                       |                                                      |                             |              |                              |                        |
|      | (a) $P(A/B)$                               | $=\frac{P(A\cap B)}{P(A\cap B)}=$ | $=\frac{10/33}{=}=\frac{1}{2}$                        | $\frac{10}{10} \times \frac{11}{10} = \frac{10}{10}$ | $\frac{1}{2} = \frac{5}{2}$ |              |                              |                        |
|      | $(\mathbf{u}) 1 (1 \mathbf{U} \mathbf{D})$ | P(B)                              | 6/11 3                                                |                                                      | 3 9                         |              |                              |                        |
|      | P(B/A)                                     | $=\frac{\Gamma(D+A)}{P(A)}$       | $=\frac{10/33}{5/9}=\frac{1}{3}$                      | $\frac{10}{33} \times \frac{9}{5} = \frac{10}{33}$   | $=\frac{6}{11}$             |              |                              |                        |
| 105. | Which of the fol                           | lowing pair                       | of events I                                           | E and F are                                          | Mutually e                  | xclusive?    |                              | <b>Dec 2021</b>        |
|      | (a) $E = \{Ram's a$                        | uge is $13$ and $3$               | nd $F = \{Ra$                                         | m is studyi                                          | ng in a coll                | ege}         |                              |                        |
|      | (b) $E = \{Sita stue\}$                    | dies in a sch                     | iool} and F                                           | $F = \{ Sita is \}$                                  | a play back                 | singer}      |                              |                        |
|      | (c) $E = \{Raju is \}$                     | an elder bro                      | ther in a fa                                          | mily} and [                                          | F = {Raju's                 | father has   | more than                    | one sone}              |
|      | (d) $\mathbf{E} = \{ \text{Banu st} \}$    | udies B.A. I                      | English lite                                          | erature and }                                        | $F = \{Banu\}$              | can read I   | English No                   | vels}                  |
| 106. | Assume that the                            | probability                       | for rain of                                           | n day is $0.4$                                       | 4 An umbre                  | ella Salesm  | an can ear                   | m ₹ 400 per            |
|      | day in case of ra                          | ain on that                       | day and wi                                            | ill lose ₹ 1                                         | 00 per day                  | if there is  | no rain. T                   | he expected            |
|      | earnings in (in₹)                          | per day of t                      | the salesma                                           | an 18                                                | (a) 100                     |              | 0 (L)                        | Dec 2021               |
|      | (a) 400                                    | (b)                               | 200                                                   |                                                      | (c) 100                     |              | (a) U                        |                        |
|      | AIISWEL.                                   |                                   |                                                       |                                                      |                             |              |                              |                        |

37.20

|      | (c)                                                                 |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                             |                                                      |                                         |                      |
|------|---------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------|----------------------|
|      |                                                                     | X                                            | Р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | рх                                                                          |                                                      |                                         |                      |
|      |                                                                     | 400                                          | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16                                                                          | 50                                                   |                                         |                      |
|      |                                                                     | -100                                         | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -6                                                                          | 50                                                   |                                         |                      |
|      |                                                                     |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | px = 10                                                                     | 00                                                   |                                         |                      |
| 107. | The probabi                                                         | lity distribu                                | tion of a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | a random variat                                                             | ole x is given                                       | below:                                  | <b>Dec 2021</b>      |
|      | X:                                                                  | 1                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                           | 4                                                    | 5                                       | 6                    |
|      | P:                                                                  | 0.15                                         | i –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.25                                                                        | 0.2                                                  | 0.3                                     | 6.1                  |
|      | What is the                                                         | Standard de                                  | viation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | of x?                                                                       |                                                      |                                         |                      |
|      | (a) 1.49                                                            |                                              | (b) 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6                                                                           | (c) 1.69                                             | (0                                      | 1) 1.72              |
| 108. | In a group of                                                       | of 20 males                                  | and 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | females, 12 ma                                                              | ales and 8 fer                                       | nales are servi                         | ice holders. What is |
|      | the probabil                                                        | ity that a pe                                | erson se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lected at rando                                                             | m from the g                                         | roup is a servi                         | ce holder given that |
|      | the selected                                                        | person is m                                  | ale?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>_</u>                                                                    |                                                      | ,                                       | Dec 2021             |
|      | (a) 0.40                                                            |                                              | (b) 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                           | (c) 0.45                                             | (0                                      | 1) 0.55              |
|      | Answer:                                                             |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                             | 1                                                    | 6                                       | 20                   |
|      | (D) S1                                                              | nce the selection of L                       | cted per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | son is a male, t                                                            | ne total nume                                        | ber of outcome                          | es = 20.             |
|      | IN                                                                  |                                              | Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | of Favourable Of                                                            | - 12<br>utcomes                                      |                                         |                      |
|      | P                                                                   | robability =                                 | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Number of Outc                                                              | omes                                                 |                                         |                      |
|      | F                                                                   | robability =                                 | = 12/20 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = 0.60                                                                      |                                                      |                                         |                      |
| 109. | There are 3                                                         | boxes with t                                 | he follo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | wing composit                                                               | ion :                                                |                                         | <b>Dec 2021</b>      |
|      | Box I : 7 Re                                                        | d + 5 White                                  | +4 Blu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ue balls                                                                    |                                                      |                                         |                      |
|      | Box II : 5 R                                                        | ED + 6 Whi                                   | te + 3 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Blue balls                                                                  |                                                      |                                         |                      |
|      | Box III : 4 F                                                       | Red + 3 Whi                                  | te + 2 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lue balls                                                                   |                                                      | _                                       |                      |
|      | One of the b                                                        | oxes is sele                                 | cted at r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | andom and a b                                                               | all is drawn fr                                      | om It.                                  |                      |
|      | What is the                                                         | probability 1                                | the draw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | vn ball is red ?₹                                                           |                                                      | 0001                                    | 1) 1 / 0             |
|      | (a) 1249 / 30                                                       | )24                                          | (b) 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4773004                                                                     | (c) 114//                                            | 3024 (0                                 | 1) 1 / 2             |
|      | Answer:                                                             | na 1 Pov                                     | Lie drov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | un.                                                                         |                                                      |                                         |                      |
|      | (a) Ca                                                              | robability of                                | f drawin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $r_{\rm III} = 1/3$                                                         | and                                                  |                                         |                      |
|      | P                                                                   | robability of                                | f drawin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | rg DOX I = 1/5 c                                                            | $m_{\rm it} = 7/16$                                  |                                         |                      |
|      | C                                                                   | 2 = Box                                      | II is dra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | wn                                                                          | $\ln n = 7710$                                       |                                         |                      |
|      | P                                                                   | robability of                                | f drawin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | In Box II = $1/3$                                                           | and                                                  |                                         |                      |
|      | P                                                                   | robability of                                | f drawin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ig a red ball fro                                                           | m it = 5/14                                          |                                         |                      |
|      | С                                                                   | lase 3 – Box                                 | III is di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rawn.                                                                       |                                                      |                                         |                      |
|      | Р                                                                   | robability of                                | f drawin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | In Box III = $1/3$                                                          | 3 and                                                |                                         |                      |
|      | P                                                                   | robability of                                | f drawin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ig a red ball fro                                                           | m it = 4/9                                           |                                         |                      |
|      | 7                                                                   | Therefore,                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                             |                                                      |                                         |                      |
|      | F                                                                   | robability =                                 | $=\left(\frac{1}{2}\times\frac{7}{2}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\left(\frac{1}{2}\right) + \left(\frac{1}{2} \times \frac{5}{1}\right) + $ | $-\left(\frac{1}{2} \times \frac{4}{2}\right) = 0.4$ | 4130                                    |                      |
|      |                                                                     | Now try the                                  | $\sqrt{3}$ 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5/ (3 14)                                                                   | (3 9)                                                |                                         |                      |
|      | -                                                                   | Option (a) $-$                               | → 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9/3024                                                                      |                                                      |                                         |                      |
|      |                                                                     | $1249 \div 1$                                | 3024 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.4130                                                                      |                                                      |                                         |                      |
|      |                                                                     | Therefore,                                   | option                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (a) is the answe                                                            | er.                                                  |                                         |                      |
| 110. | For a probab                                                        | oility distrib                               | ution n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | robability is give                                                          | ven by P(Xi)                                         | $=\frac{x}{2}$ X <sub>n</sub> = 1.2     | 9 The value of       |
|      | k in                                                                | uistiio                                      | ution, p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | i oouointy is gi                                                            | , en ej, i (in)                                      | k , , , , , , , , , , , , , , , , , , , | Dog 2021             |
|      | $\begin{array}{c} \mathbf{K} \ 18 \\ \mathbf{(a)} \ 55 \end{array}$ |                                              | $(\mathbf{b}) 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                             | (c) 15                                               | ((                                      | J) 81                |
|      | (a) 55<br>Answer                                                    |                                              | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                             | (0) + 3                                              | (C                                      | 1) 01                |
|      |                                                                     | to $\mathbf{D}(\mathbf{V}_{i}) = \mathbf{I}$ | X <sub>i</sub> chow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | d ha idaallee eee                                                           | $\mathbf{D}(\mathbf{V})$                             | $-\frac{X_i}{X_i}$                      |                      |
|      | (C) INO                                                             | $\mathbf{r}(\mathbf{A}_{i}) = \mathbf{r}$    | $\frac{1}{k}$ should a should a should a should be should be should be a should b | u de lueally Wr                                                             | $(\mathbf{A}_i)$                                     | $-\frac{k}{k}$                          |                      |
|      | W                                                                   | e know that                                  | sum of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Probabilities is                                                            | 51.                                                  |                                         |                      |
|      | $\frac{1}{k}$                                                       | $+\frac{2}{k}+\frac{3}{k}+\frac{4}{k}$       | $+\frac{3}{k}+\frac{6}{k}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $+\frac{r}{k}+\frac{3}{k}+\frac{3}{k}=$                                     | 1                                                    |                                         |                      |
|      |                                                                     |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                             |                                                      |                                         |                      |



sample space  $n(s) = {}^{30}c_2$ 

 $=\frac{30\times29}{2\times1} = 435$ A getting ball No as multiple of 2  $n(A) = {}^{15}C_2 = \frac{15\times14}{2\times1} = 105$  $P(A) = \frac{105}{435}$ B  $\rightarrow$  getting ball No as multiple of 5  $n(B) \rightarrow {}^{6}C_2 = \frac{6\times5}{2\times1} = 15$  $P(B) = \frac{15}{435}$ A  $\cap$  B getting ball is No is multiple of 2 and 5(10)  $n(A \cap B) = {}^{3}C_2 = 3$  $P(A \cap B) = \frac{3}{435}$  $P({}^{2}$  or '5') = P(A \cup B)  $= \frac{105}{435} + \frac{15}{435} - \frac{3}{435}$  $= \frac{105+15-3}{435}$  $= \frac{(117)}{435}$ 

**114.** Two perfect dice are rolled what is the probability that one appears at least in one of the dice? **June 2022** 

(a)  $\frac{7}{36}$  (b)  $\frac{11}{36}$  (c)  $\frac{9}{36}$  (d)  $\frac{15}{36}$ 

Answer:

(b) If two dice are Rolled then Sample space n(s) = 36Event 'A' "getting '1' appears at least in one of the dice" { (1,2) (1,3) (1,4) (1,5) (1,6) (1,1) (2,1) (3,1) (4,1) (5,1) (6,1) } n(A) = 11 $P(A) = \frac{n(A)}{n(S)} = \frac{11}{36}$ 

115. If two dice are rolled and one of the dice shows 1 at a point then how many such outcome can be done where it is known that its probability is  $\frac{x}{36}$ , where x = \_\_\_\_\_ June 2022

(a) 11 (b) 7(c) 8(d) 9Answer: (a) If two dice are Rollet then sample space n(s) = 36Event (A) = "getting one of the dice show as 1"  $\{(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)\}$ (2,1)(3,1)(4,1)(5,1)(6,1)n(A) = 11**116.** If P (A) = 0.3; P (B) = 0.8 and P  $\left(\frac{B}{A}\right)$  = 0.5, find P (A  $\cup$  B) **June 2022** (a) 0.85 (b) 0.95 (c) 0.55 (d) 0.5Answer: (**b**) Given P(A) = 0.3, P(B) = 0.8, P(B/A) = 0.5 $P(B/A) = \frac{P(A \cap B)}{P(A)}$  $0.5 = \frac{P(A \cap B)}{0.3}$  $P(A \cap B) = 0.5 \times 0.3 = 0.15$  $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ = 0.3 + 0.8 - 0.15= 1.10 - 0.15 = 0.95117. If P Q are the odds in favour of an event, then the probability of that event is – June 2022 (b)  $\frac{p}{p+q}$ (c)  $\frac{q}{p+q}$ (a)  $\frac{p}{a}$ (d)  $\frac{q}{p}$ 

Answer:

(**b**) If odd in favour of an event = p : qThen Probability of success  $P(A) = \frac{p}{(p+q)}$ 118. A machine is made of two parts A and B. The manufacturing process of each part is such that probability of defective in part A is 0.08 and that B is 0.05. What is the probability that the assembled part will not have any defect? **Dec 2022** (a) 0.934 (b) 0.864 (c) 0.85(d) 0.874Answer: (d) P(defective part of A) = 0.08 $P(\overline{A}) = 0.08$ P(defective part of B) = 0.05 $P(\overline{B}) = 0.05$  $P(A) = 1 - P(\overline{A}) = 1 - 0.08 = 0.92$  $P(B) = 1 - P(\overline{B}) = 1 - 0.05 = 0.95$ P(the Assembled part will not have any defect)  $= P(A \cap B)$  $= P(A) \cdot P(B)$  $= 0.92 \times 0.95$ = 0.874**119.** If  $P(A) = \frac{1}{3}$ ,  $P(B) = \frac{3}{4}$  and  $P(A \cup B) = \frac{11}{12}$  then  $P\left(\frac{B}{A}\right)$  is: (a)  $\frac{1}{6}$  (b)  $\frac{4}{9}$  (c)  $\frac{1}{2}$ **Dec 2022**  $(d)\frac{1}{2}$ **Answer:** (c) We know that: We know that:  $P(A \cup B) = P(A) + P(B) - P(A \cap B)$   $\frac{11}{12} = \frac{1}{3} + \frac{3}{4} - P(A \cap B)$   $P(A \cap B) = \frac{1}{3} + \frac{3}{4} - \frac{11}{12}$   $= \frac{4+9}{12} = 11$   $= \frac{2}{42} \frac{1}{6}$   $P(A \cap B) = \frac{1}{3}$   $P(B/A) = \frac{P(A \cap B)}{\frac{1}{2}}$  $P(A) = \frac{\frac{1}{6}}{\frac{1}{3}} = \frac{1}{6} \times \frac{3}{1} = \frac{1}{2}$ 

| Probabili     | ty 37.24                                                                                           |                                                                      | <b>GOPAL BHOOT</b>                                     |
|---------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------|
| 120. 7        | The probability that a leap year has 53 Monday is                                                  | <b>Dec 2022</b>                                                      |                                                        |
| (             | a) $\frac{1}{2}$ (b) $\frac{2}{2}$ (c)                                                             | $\frac{2}{2}$ (d) $\frac{3}{2}$                                      |                                                        |
|               | 7 $(0)$ $3$ $(0)$                                                                                  | 7 5                                                                  |                                                        |
| F             | (c) There are 366 days in a lean year                                                              |                                                                      |                                                        |
|               | 736652                                                                                             |                                                                      |                                                        |
|               |                                                                                                    |                                                                      |                                                        |
|               | 16                                                                                                 |                                                                      |                                                        |
|               | <u>14</u>                                                                                          |                                                                      |                                                        |
|               | $2 \rightarrow \text{Odd days}$                                                                    |                                                                      |                                                        |
|               |                                                                                                    | )                                                                    |                                                        |
|               | (a) Sunday & Monday<br>(b) Monday & Tuesday                                                        |                                                                      |                                                        |
|               | (b) Monday & Tuesday<br>(c) Tuesday & Wednesday                                                    | p(S) = 7                                                             |                                                        |
|               | (d) Wednesday & Thursday                                                                           | $\sum_{n(A)=2}^{n(B)=7}$                                             |                                                        |
|               | (e) Thursday & Friday                                                                              | P(A) = 2/7                                                           |                                                        |
|               | (f) Friday & Saturday                                                                              |                                                                      |                                                        |
|               | (g) Saturday & Sunday —                                                                            | )                                                                    |                                                        |
| 101 0         |                                                                                                    | 1                                                                    | $\mathbf{N}(\mathbf{D}) \neq 0 + 1 + 1^{2}$            |
| 141. 3        | Suppose A and B are two independent events with<br>and B' be their complements. Which one of the f | In probabilities $P(A) \neq 0$ and F<br>allowing statements in FALSI | $f(B) \neq 0$ . Let A<br>$F_2 \operatorname{Dec} 2022$ |
| a<br>(        | a) $P(A \cap B) = P(A) P(B)$ (b)                                                                   | P(A   R) - P(A)                                                      | 5: Dec 2022                                            |
|               | $ (A \cup B) = P(A) + P(B) $ (b)                                                                   | $P(A' \cap B') = P(A')$                                              |                                                        |
| A             | Answer:                                                                                            |                                                                      |                                                        |
|               | (c) If A and B are two independent events                                                          |                                                                      |                                                        |
|               | Where $P(A) \neq 0$ and $P(B) \neq 0$ and Let                                                      | 'A' and 'B' be their complet                                         | nents. Then,                                           |
|               | $P(A \cup B) = P(A) + P(B)$ is false and re-                                                       | est of all is true.                                                  |                                                        |
| 122. 7        | The Theorem of compound Probability states that                                                    | for any two events A and B.                                          | Dec 2022                                               |
| (             | a) $P(A \cap B) = P(A) \times P(B / A)$ (b)                                                        | $P(A \cup B) = P(A) \times P(B / A)$                                 |                                                        |
| (             | c) $P(A \cap B) = P(A) \times P(B)$ (d)                                                            | $P(A \cup B) = P(A) + P(B) - P$                                      | $(\mathbf{A} \cap \mathbf{B})$                         |
| F             | (a) The theorem of compound probability                                                            | states that for any two events                                       | A and B is                                             |
|               | (a) The decident of compound probability $P(A \cap B) =$                                           | states that for any two events                                       | A and D 15                                             |
|               | $P(A) \times P(B/A)$                                                                               |                                                                      |                                                        |
| <b>123.</b> I | f a number is selected at random from the                                                          | first 50 natural numbers, wh                                         | hat will be the                                        |
| p             | probability that the selected number is a multiple                                                 | of 3 and 4? <b>Dec 2022</b>                                          |                                                        |
| (             | a) 5/50 (b) 2/25 (c)                                                                               | 3/30 (d) 4/25                                                        |                                                        |
| A             | Answer:                                                                                            |                                                                      |                                                        |
|               | (b) There are first 50 natural numbers                                                             |                                                                      |                                                        |
|               | If one number is selected. Then<br>No. of semple space $p(s) = 50$                                 |                                                                      |                                                        |
|               | Event ( $\Delta$ ) – getting no, is multiple of                                                    |                                                                      |                                                        |
|               | 2  and  4  (i.e. = 12)                                                                             |                                                                      |                                                        |
|               |                                                                                                    |                                                                      |                                                        |
|               | $n(A) = \frac{50}{12}$                                                                             |                                                                      |                                                        |
|               | $n(A) = \frac{12}{4}$                                                                              |                                                                      |                                                        |
|               | $P(A) = \frac{n(A)}{(A)} = \frac{4}{(A)} = \frac{2}{(A)}$                                          |                                                                      |                                                        |
| 124. I        | f three coins are tossed simultaneously, what is t                                                 | he probability of getting two                                        | heads together?                                        |
|               |                                                                                                    | in proceeding of groung on a                                         | Dec 2022                                               |
| (             | a) 1/4 (b) 1/8 (c)                                                                                 | 5/8 (d) 3/8                                                          |                                                        |
| A             | Answer:                                                                                            |                                                                      |                                                        |
|               | (d) If three coins are tossed simultaneously                                                       |                                                                      |                                                        |
|               | Then sample space (s) = {HHH, HHT<br>n(s) = 8                                                      | , нін, нії, тії, тії, тії, т                                         | I, IHH}                                                |

Event (A) = 'getting exactly two head'  
= { HHT, HTH, THH }  
n(A) = 3  
Then P(A) = 
$$\frac{n(A)}{n(B)} = \frac{1}{4}$$
  
125. Four persons are chose at random frame a group of 3 men , 2women and 4 children . The  
probability that exactly 2 of them are children is ? June 2023  
(a) 10/21 (b) 1/12 (c) 1/5 (d) 1/9  
Answer:  
(a) Total person = 3M + 2W + 4C  
= 9  
If four persons are taken at a time  
Then no. of samples pace n(s) = °C.a  
=  $\frac{9808726}{48332231}$   
= 126  
Events (A) = Exactly 2 of them are children  
=  $\frac{4}{C_2} \times 3C_2$   
=  $6 \times 10$   
n(A) = 60  
P(A) =  $\frac{n(A)}{n(B)} = \frac{10}{126} = \frac{10}{12}$   
126. If P (A)=17.3, P(B) =  $\frac{1}{4}$ , P(A/B) =  $\frac{1}{6}$ , find P(A/B)  
(a) 1/2  
Answer:  
(a) P(A) =  $\frac{1}{3}$ , P(B) =  $\frac{1}{4}$ , P(A/B) =  $\frac{1}{6}$  find P(A/B)  
We know that  
P(A/B) =  $\frac{P(A/B)}{P(B)} = \frac{1724}{7} = \frac{3}{24} = \frac{1}{8}$   
127. Company a produces 10% defective products, company B produces 20% defective products ,  
company C produces 5% defective products, termosaing company is an equally likely events .  
What is probability that the product. Chosen is free from defect . June 2023  
(a) 0.88 (b) 0.80 (c) 0.79 (d) 0.78  
Answer:  
(a) There are 3 company 'A', 'B' and 'C'  

$$\boxed{Company A} \boxed{Company B} \boxed{Company C}$$
  
P(A) = P(B) = P(C) = 1/3  
P(E/A) =  $\frac{P(A)}{P(B)} = \frac{2}{10}$ , P(E/C) =  $\frac{5}{100}$   
Probability that the product chosen is defective  
= P(A), P(E/A) + P(B), P(E/B) + P(C). P(E/C))  
=  $\frac{1}{4} \times \frac{10}{100} + \frac{1}{8} \times \frac{1$ 

Then probability that product chosen is free of defect

$$= 1 - 0.12 = 0.88$$

**128.** The probability distribution of x given below

| Value of x  | 1 | 0   | Total |
|-------------|---|-----|-------|
| Probability | Р | 1-P | 1     |

| Mean is equal t | o. Jun                    | e 2023     |            |          |          |            |                                  |
|-----------------|---------------------------|------------|------------|----------|----------|------------|----------------------------------|
| (a) P           |                           | (b) 1-P    |            |          | (c) 0    |            | (d) 1                            |
| Answer:         |                           |            |            |          |          |            |                                  |
| (a) Here,       |                           |            |            |          |          |            |                                  |
|                 |                           | Xi         | 1          | 0        | Total    |            |                                  |
|                 |                           | Pi         | Р          | (1 - P)  | 1        |            |                                  |
| Mean            | = E(x)                    | L          |            |          |          | I          |                                  |
|                 | $=\sum P_i x_i$           |            |            |          |          |            |                                  |
|                 | $= P_1 X_1 -$             | $+ P_2X_2$ |            |          |          |            |                                  |
|                 | $= \mathbf{P} \times 1 +$ | (1 - P)    | $\times 0$ |          |          |            |                                  |
|                 | = P + 0                   |            |            |          |          |            |                                  |
|                 | = P                       |            |            |          |          |            |                                  |
| For any two ev  | ents A ar                 | nd B. It   | is P (A    | = 2/3, P | (B) = 3/ | 8 and P (A | $(A B) = \frac{1}{4}$ . Then the |

**129.** For any two events A and B. It is P(A) = 2/3, P(B) = 3/8 and P(A|B) = 1/4. Then the events A and B are June 2023

(a) Mutually exclusive and independent

(b) Mutually not exclusive and independent

(c) Mutually exclusive, But not independent

(d) Neither independent nor mutually exclusive

Answer:

(b) Given:

P(A) = 
$$\frac{2}{3}$$
, P(B) =  $\frac{3}{8}$  and P(A \cap B) =  $\frac{1}{4}$   
Now  
P(A \cap B) = P(A) × P(B)  
=  $\frac{2}{3} \times \frac{3}{8}$   
P(A \cap B) =  $\frac{1}{4}$ 

 $P(A \cap B) = P(A) \times P(B)$ 

So A & B are Independent event but not mutually exclusive

**130.** The Probability that a 4-digit number comprising the digit 2,5,6 and 7 without refection of digit would be divisible by 4. June 2023

(a) 1/2 (b) 3/4 (c) 1/4 (d) 1/3

#### Answer:

(d) Total 4 digit Numbers are made from using the digit 2, 5, 6, 7 are

| 2567 | 5267 | 6257 | 7256 |
|------|------|------|------|
| 2576 | 5276 | 6275 | 7265 |
| 2657 | 5627 | 6527 | 7526 |
| 2675 | 5672 | 6572 | 7562 |
| 2756 | 5726 | 6725 | 7625 |
| 2765 | 5762 | 6752 | 7652 |

Here, Total sample space n(s) = 24

0

(A) = Numbers 'which is divisible by '4'

= {2576, 2756, 5276, 5672, 6572, 6752, 7256, 7652}

$$n(A) = 8$$

$$P(A) = \frac{n(A)}{n(S)} = \frac{3}{24} = \frac{1}{3}$$

131. On a commodity exchange when booking traits with provision for stop strider can make a profit of ₹50,000 or incur a loss of ₹20,000. The probability of making profit an incurring losses from the part experience are known to be\_\_\_\_\_ and 0.5 respectively. The

| robability                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 37.27                                                                                                          |                                               |                     | <b>GOPAL BHOO</b> |
|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------|-------------------|
| expected profit<br>(a) ₹32,500<br><b>Answer:</b> | to be made by trac<br>(b) ₹35,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ler should be .<br>00                                                                                          | June 2023<br>(c) ₹30,000                      | (d) ₹35             | ,200              |
| (a) Profit (                                     | +) and Loss(-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                |                                               |                     |                   |
|                                                  | $\mathbf{x}_i =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50,000                                                                                                         | -20,000                                       | 7                   |                   |
|                                                  | $p_i =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.85                                                                                                           | 0.5                                           |                     |                   |
| Expec                                            | $\frac{1}{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\sum n \cdot r \cdot$                                                                                         |                                               | _                   |                   |
| Ехрес                                            | = 1 $= 2$ $= 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{l} p_1 x_1 \\ p_1 x_1 + p_2 x_2 \\ 50,000 \times 0.85 \\ 42,500 - 10,000 \\ 32,500 \end{array}$ | + (-20,000) × 0<br>0                          | 9.5                 |                   |
| <b>132.</b> If a random vari                     | able X has the fol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lowing probab                                                                                                  | ility distributio                             | on, then the expec  | cted value of X   |
| is:                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                              | 0                                             | 1                   | 2                 |
| $\mathbf{X}$<br>$\mathbf{E}(\mathbf{x})$         | -1<br>1/6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -2<br>1/6                                                                                                      | 0                                             | l<br>1/6            | 2<br>1/2          |
| $\frac{\Gamma(X)}{\text{Iune 2023}}$             | 1/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1/0                                                                                                            | 1/3                                           | 1/0                 | 1/3               |
| (a) $3/2$                                        | (b) $1/2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                | (c) 1/6                                       | (d) 1/5             |                   |
| Answer:                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                |                                               |                     |                   |
| (c)                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                |                                               |                     |                   |
| $\mathbf{x}_1$ :                                 | -1 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 0                                                                                                            | 1                                             | 2                   |                   |
| $P_1$ :                                          | 1/3 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1/6 1/5                                                                                                        | 1/6                                           | 1/3                 |                   |
| Expe                                             | cted value of x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                |                                               |                     |                   |
|                                                  | $= \frac{1}{3} \times (-1) + \frac{1}{6}(-1) + \frac{1}{6}(-$ | $ \frac{1}{3x^3} + \frac{1}{5} \times 0 + \frac{1}{5} \times 0 + \frac{2}{3} $                                 | $\frac{1}{6} \times 1 + \frac{1}{3} \times 2$ |                     |                   |
| <b>133.</b> If $P(A) = 1/2$ and                  | P(B) = 1/3 and $P(B) = 1/3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $A \cup B$ ) =2/3 th                                                                                           | en find $P(A \cap$                            | B): dec 2023        |                   |
| (a) $\frac{1}{4}$                                | (b) $\frac{2}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                | $(c)\frac{1}{\epsilon}$                       | $(d)\frac{1}{2}$    |                   |
| Answer :                                         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                | 0                                             | 2                   |                   |
| (c) Given P(                                     | $(A) = \frac{1}{2}, P(B) = \frac{1}{2},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $P(A \cup B) = \frac{2}{2}$                                                                                    |                                               |                     |                   |
| PC                                               | $A \cap B) = ?$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                                                                                              |                                               |                     |                   |
| We know                                          | v that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                |                                               |                     |                   |
| $P(\frac{2}{3} = \frac{1}{3})$                   | $ (A \cup B) = P(A) + P  = \frac{1}{2} + \frac{1}{3} - P(A \cap B)  (A \cap B) = \frac{1}{2} + \frac{1}{3} - \frac{2}{3}  = \frac{3+2-4}{6} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $P(B) - P(A \cap B)$                                                                                           | )                                             |                     |                   |
| 134 A how contain                                | 6<br>20 electrical bull                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | a out of which                                                                                                 | h 1 are defee                                 | tive Two bulbs      | are chosen at     |
| random from the                                  | 20 electrical built is box. The probab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | oility that at lea                                                                                             | st one of them                                | defective dec ?     | 023               |
| $(a) \frac{7}{-}$                                | $(h) \frac{4}{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                | (c) $\frac{12}{-12}$                          | (d) $\frac{15}{15}$ |                   |
| <sup>(1)</sup> 19                                | (0) 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                | 9                                             | (4) 19              |                   |
| Answer:<br>(a)If                                 | Total Electric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bulb = 20                                                                                                      |                                               |                     |                   |
| (4)11                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Jui0 - 20<br>▼                                                                                                 |                                               |                     |                   |
| No. of de                                        | fective Bulb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No. of good                                                                                                    | l Bulb                                        |                     |                   |

(4) (20-4)=16If two bulb are chosen at random from the box then No. of sample Sample  $n(s) = 20_{c_2}$ 

20×19 2×1 = 190Event. (A) = 'getting at least are defective bulb' = (1 defective and 1 good or 2 defective and '0' good )  $n(A) = 4_{c_1} \times 16_{c_1} + 4_{c_2} \times 16_{c_0}$  $= \frac{4}{1} \times \frac{16}{1} + \frac{4 \times 3}{2 \times 1} \times 1$ = 64 + 6n(A) = 70 $p(A) = \frac{n(A)}{n(S)} = \frac{70}{190} = \frac{7}{19}$ 135. If a card is drawn at random from a pack of 52 cards, what is the chance of getting a Club or a King ? dec 2023 (a)  $\frac{13}{52}$  $(c)\frac{17}{52}$  $(d) \frac{16}{52}$  $(b)\frac{4}{52}$ Answer: (d) If one card is drawn at random from the pack of 52 cards. Then No. of sample space n(s) = 52Event (A) 'getting card is club or king' n(A) = 16 $P(A) = \frac{16}{52}$ **136.** A number is selected from the first 30 natural numbers. What is the probability that it would be divisible by 3 or 8? dec2023 (c) 0.6(a) 0.2(b) 0.4(d) 0.8Answer: (b) Here, A Number is selected from the first '30' Natural Numbers. Then,  $n(S) = 30_{c_1} = 30$ Event (A) = getting No. is divisible by 3 or 8.  $= \{3,6,9,12,15,18,21,24,27,30,8,16\}$ n(A) = 12 $=\frac{n(A)}{n(S)}=\frac{12}{30}=0.4$ P(A) **137.** If P(A \cap B)  $= \frac{1}{3}$ , P(A \cap B)  $= \frac{5}{6}$ , P( $\overline{B}$ )  $= \frac{1}{2}$ , then P( $\overline{A}$ ) is: dec 2023 (a)  $\frac{2}{2}$  (b)  $\frac{1}{3}$  (c)  $\frac{1}{4}$  $(d)\frac{3}{4}$ (a)  $\frac{2}{3}$ **Answer**: (**a**) Given,  $P(A \cap B) = \frac{1}{3}$ ,  $P(A \cup B) = \frac{5}{6}$ ,  $P(B) = \frac{1}{2}$ Then,  $p(\overline{A}) = ?$  $P(B) = 1 - \frac{1}{2} = \frac{1}{2}$ We know that  $P(A \cup B) = P(A) + P(B) - P(A \cap B)$  $\frac{5}{6} = P(A) + \frac{1}{2} - \frac{1}{3}$   $P(A) = \frac{5}{6} + \frac{1}{3} - \frac{1}{2}$   $P(A) = \frac{5+2-3}{6} = \frac{4}{6} = \frac{2}{3}$ **138.** A number is selected at random from the first 100 natural numbers. What is that probability that it would be a multiple of 3 or 7? dec 2023

(a) 
$$\frac{33}{100}$$
 (b)  $\frac{4}{100}$  (c)  $\frac{21}{100}$  (d)  $\frac{43}{100}$ 

Answer :

(d) If one No. is selected at random from the first 100 Natural Number. Then No. of sample spaces n(S) = 100<sub>c1</sub>=100 A 'getting No. is divisible by 3

$$n(A) = \frac{100}{3} = 33$$

$$P(A) = \frac{33}{100}$$
B getting No. is divisible by 7
$$n(B) = \frac{100}{7} = 14$$

$$P(B) = \frac{14}{100}$$

$$A \cap B = \text{`getting Number is divisible by'3 and 7 = (21)}$$

$$n(A \cap B) = \frac{100}{21} = 4$$

$$P(A \cap B) = \frac{4}{100}$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$= \frac{33}{100} + \frac{14}{100} - \frac{4}{100}$$

$$= \frac{43}{100}$$

| Answer Key |   |      |   |      |   |      |   |      |   |      |   |      |   |      |   |      |   |      |   |
|------------|---|------|---|------|---|------|---|------|---|------|---|------|---|------|---|------|---|------|---|
| 1.         | с | 2.   | b | 3.   | с | 4.   | a | 5.   | с | 6.   | a | 7.   | a | 8.   | b | 9.   | d | 10.  | a |
| 11.        | d | 12.  | с | 13.  | d | 14.  | с | 15.  | с | 16.  | b | 17.  | a | 18.  | c | 19.  | a | 20.  | d |
| 21.        | d | 22.  | d | 23.  | b | 24.  | d | 25.  | c | 26.  | b | 27.  | c | 28.  | c | 29.  | c | 30.  | d |
| 31.        | с | 32.  | c | 33.  | b | 34.  | c | 35.  | b | 36.  | b | 37.  | c | 38.  | a | 39.  | d | 40.  | b |
| 41.        | b | 42.  | с | 43.  | b | 44.  | b | 45.  | d | 46.  | b | 47.  | с | 48.  | с | 49.  | a | 50.  | d |
| 51.        | b | 52.  | a | 53.  | b | 54.  | с | 55.  | a | 56.  | d | 57.  | a | 58.  | b | 59.  | a | 60.  | b |
| 61.        | с | 62.  | b | 63.  | a | 64.  | a | 65.  | d | 66.  | a | 67.  | a | 68.  | a | 69.  | a | 70.  | d |
| 71.        | b | 72.  | d | 73.  | с | 74.  | a | 75.  | b | 76.  | b | 77.  | b | 78.  | b | 79.  | a | 80.  | b |
| 81.        | a | 82.  | b | 83.  | b | 84.  | a | 85.  | d | 86.  | с | 87.  | d | 88.  | b | 89.  | d | 90.  | b |
| 91.        | a | 92.  | с | 93.  | d | 94.  | с | 95.  | с | 96.  | a | 97.  | d | 98.  | с | 99.  | с | 100. | b |
| 101.       | с | 102. | с | 103. | d | 104. | a | 105. | a | 106. | с | 107. | с | 108. | b | 109. | с | 110. | с |
| 111.       | с | 112. | b | 113. | b | 114. | b | 115. | a | 116. | b | 117. | b | 118. | d | 119. | с | 120. | с |
| 121.       | с | 122. | a | 123. | b | 124. | d |      |   |      |   |      |   |      |   |      |   |      |   |

#### **GOPAL BHOOT**

# CHAPTER PROBABILITY (THEORETICAL) DISTRIBUTION PAST YEAR QUESTIONS

- What is the probability of making 3 correct guesses in 5 True False answer type questions? 1. Nov-2006 (a) 0.4156 (b) 0.32 (c) 0.3125 (d) 0.5235 2. The I.Q.'s of army volunteers in a given year are normally distributed with Mean = 110 and Standard Deviation = 10. The army wants to give advance training to 20% of those recruits with the highest scores. What is the lowest I.Q score acceptable for the advanced training? The value of Z for the area 0.3 = 0.84. Nov - 2006 (b) 118.4 (c) 138.4 (a) 0.84(d) 115.4 The number of calls arriving at an internal switch board of an office is 96 per hour. Find the 3. probability that there will be : Nov - 2006 (i) not more than 3 calls on the board, (ii) at least three calls in a minute on the board. [Given:  $e^{-1.6} = 0.2019$ ] (a) 0.08 and 0.92 respectively (b) 0.19 and 0.92 respectively (c) 0.92 and 0.13 respectively (d) 0.92 & 0.22 respectively 4. For a normal distribution with mean 150 and S.D. 45; find  $Q_1$  and  $Q_3$ : Nov - 2006 (a) 119.35 and 190.65 respective (b) 119.65 and 180.35 respective (c) 180.35 and 119.65 respective (d) 123.45 and 183.65 respectively The probability density function of a normal variable x is given by : Nov - 2006 5. (a)  $f(x) = \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{\frac{-(x-\mu)^2}{2\sigma^2}}$  for  $0 < x < \infty$  (b)  $f(x) = \frac{1}{\sqrt{2\pi\sigma}} \cdot e^{\frac{-(x-\mu)^2}{2\sigma^2}}$  for  $-\infty < x < \infty$ (c)  $f(x) = \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$  for  $-\infty < x < \infty$  (d) None of these. The Interval  $(\mu - 3\delta, \mu + 3\delta)$  covers : 6. **May - 2007** (b) 96% area of normal distribution (a) 95% area of normal distribution (c) 99% area of normal distribution (d) All but 0.27% area of a normal distribution 7. The overall percentage of failure in a certain examination is 0.30. What is the probability that out of a group of 6 candidates at least 4 passed the examination ? **May - 2007** (a) 0.74 (b) 0.71 (c) 0.59 (d) 0.67 A manufacturer, who produces medicine bottles, finds that 0.1% of the bottles are defective. 8. The bottles are packed in boxes containing 500 bottles. A drug manufacturer buys 100 boxes from the producer of bottles. Using Poisson distribution, find how many boxes will contains **May - 2007** [Given:  $e^{-0.5} = 0.6065$ ] at least two defectives: (c) 9(d) 11 (a) 7 (b) 13 9. The number of methods of fitting the normal curve is : Aug - 2007 (b) 3 (c) 2 (a) 4 (d) 1 If the 1<sup>st</sup> quartile and Mean Deviation about median of a normal distribution are 13.25 and 8 10. respectively, then the mode of the distribution is : Aug - 2007 (b) 10 (d) 23 (a) 20(c) 15 If X is a Poisson variate with P(X = 0) = P(X = 1), then P(X = 2) =: 11. Nov - 2007 (a) 1/6e (b) e/6(c) 1/2e (d) e/3A sample of 100 dry battery cells tested to find the length of life produced the following 12. results:  $\bar{x} = 12$  hours,  $\sigma = 3$  hours What percentage of battery cells are expected to have life **Nov - 2007** [Area under the normal curve from z = 0 to z = 2 is 0.4772] less than 6 hours?
  - (b) 2.56% (c) 4.56%

(d) 1.93%

(a) 2.28%

# Probability (Theoretical) Distribution

38.2

| 13. | The method usually applied for fitting a binomial distribution is known as :<br>(a) Method of probability distribution (b) Method of deviations<br>(c) Method of moments (d) Method of least squares |                                                         |                                                    |                                 |                                   |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------|---------------------------------|-----------------------------------|
| 14. | In a certain manufactu:<br>probability that in a sa:<br>0.1351                                                                                                                                       | s<br>ring process, 5% of the<br>mple of 40 tools, at mo | tools produced turn of<br>st 2 will be defective : | ut to be defect<br>Nov - 2007 [ | tive. Find the Given : $e^{-2} =$ |
| 15. | (a) 0.555<br>Examine the validity of                                                                                                                                                                 | (b) 0.932<br>f the following :                          | (c) 0.785                                          | (d) 0.675                       |                                   |
|     | Mean and standard De 2007                                                                                                                                                                            | viation of a binomial d                                 | istribution are 10 and 4                           | 4 respectively                  | . Nov -                           |
| 16. | (a) Not valid<br>An experiment succee                                                                                                                                                                | (b) Valid<br>ds twice as often as i                     | (c) Both (a) & (b)<br>t fails. What is the pr      | (d) Neither (<br>obability that | (a) nor (b)<br>in next five       |
| 1.7 | (a) 33/81                                                                                                                                                                                            | (b) 46/81                                               | (c) 64/81                                          | (d) 25/81                       | Julie - 2008                      |
| 17. | The probability than<br>probability that of 10 r<br>[Given : $e^{-0.12} = 0.8869$                                                                                                                    | a man aged 45 years<br>nen, at least 9 will reac<br>22] | h their 46 <sup>th</sup> birthday?                 | ear 18 0.012.                   | What is the <b>June - 2008</b>    |
|     | (a) 0.0935                                                                                                                                                                                           | (b) 0.9934                                              | (c) 0.9335                                         | (d) 0.9555                      |                                   |
| 18. | For a certain normal vanormal curve from $z =$                                                                                                                                                       | ariate X, the mean is 12<br>0 to $z = 2$ is 0.4772]     | 2 and S.D. is 4. Find P                            | (X ≥ 20): [A                    | rea under the June - 2008         |
| 10  | (a) 0.5238                                                                                                                                                                                           | (b) 0.0472                                              | (c) 0.7272                                         | (d) 0.0228                      | J                                 |
| 19. | III POISSOII DIStributioi $(a) -1$                                                                                                                                                                   | (b) 0                                                   | (c) 1                                              | (d) None                        | June - 2008                       |
| 20. | If the mean of a Poisso                                                                                                                                                                              | on variable X is 1, what                                | t is P (x = at least one)                          | ?                               | Dec - 2008                        |
|     | (a) 0.456                                                                                                                                                                                            | (b) 0.821                                               | (c) 0.632                                          | (d) 0.254                       |                                   |
| 21. | What is the probability 2008                                                                                                                                                                         | of getting 3 heads if 6                                 | 5 unbiased coins are to                            | ssed simultan                   | eously? Dec-                      |
|     | (a) 0.3125                                                                                                                                                                                           | (b) 0.25                                                | (c) 0.6875                                         | (d) 0.50                        |                                   |
| 22. | In a Poisson distributio                                                                                                                                                                             | on P (x = 0) = P (X = 2)                                | ). Find $E(x)$ .                                   |                                 | June - 2009                       |
|     | (a) $\sqrt{2}$                                                                                                                                                                                       | (b) 2                                                   | (c) -1                                             | (d) 0                           |                                   |
|     | (a) $F(x)$ stands for                                                                                                                                                                                | r mean of the distributi                                | on                                                 |                                 |                                   |
|     | Let x be a Pois                                                                                                                                                                                      | son variate with param                                  | neter m.                                           |                                 |                                   |
|     | The probabilit                                                                                                                                                                                       | y function of x is then                                 | given by:                                          |                                 |                                   |
|     | $f(\mathbf{x}) = \frac{e^{-m} \cdot m^x}{m}$                                                                                                                                                         | for $\mathbf{x} = 0, 1, 2$                              | · ·                                                |                                 |                                   |
|     | $\frac{\mathbf{r}(\mathbf{x}) - \mathbf{x}!}{\mathbf{x}!}$                                                                                                                                           | D = D(v = 2)                                            | 5                                                  |                                 |                                   |
|     | f(0) = f(2)                                                                                                                                                                                          | (X - 2)                                                 |                                                    |                                 |                                   |
|     | $e^{-m}.m^{x}$ $e^{-n}$                                                                                                                                                                              | $^{n}.m^{2}$                                            |                                                    |                                 |                                   |
|     | 0! =                                                                                                                                                                                                 | 2!                                                      |                                                    |                                 |                                   |
|     | $\frac{m^2}{1} = \frac{m^2}{2}$                                                                                                                                                                      |                                                         |                                                    |                                 |                                   |
|     | $1 = \frac{m^2}{2}$                                                                                                                                                                                  |                                                         |                                                    |                                 |                                   |
|     | $m^2 = 2$                                                                                                                                                                                            |                                                         |                                                    |                                 |                                   |
|     | $m = \sqrt{2} \cong$                                                                                                                                                                                 | 1.414                                                   |                                                    |                                 |                                   |
| 22  | Ineretore, the<br>Shape of Normal Distr                                                                                                                                                              | inean of this distributi                                | $\sin 18 E(x) = m = \sqrt{2}$                      |                                 | Dec_2000                          |
| 23. | (a) Depends on its para                                                                                                                                                                              | ameters                                                 | (b) Does not depend                                | on its parame                   | ters                              |
|     | (c) Either (a) or (b)                                                                                                                                                                                |                                                         | (d) Neither (a) nor (b                             | )                               |                                   |
|     | Answer:                                                                                                                                                                                              |                                                         |                                                    |                                 |                                   |
|     | (a) Shape of the No                                                                                                                                                                                  | ormal Distribution curv                                 | ve depends on its paran                            | neters.                         |                                   |
| 24  | [self-explanato                                                                                                                                                                                      | ry].                                                    |                                                    |                                 | D., 2000                          |
| 24. | (a) 3                                                                                                                                                                                                | on $E(x) = 2$ , $V(x) = 4/$<br>(b) 4                    | 5. Find the value of n.<br>(c) 5                   | (d) 6                           | Dec-2009                          |

 $15p^2q^4 = 9.15 p^4q^2$ 

#### 38.3

Answer: (d) E(x) = np = 2v(x) = npq = 4/3.np = 2 .....(1) npq =  $\frac{4}{3}$ substituting the value of np from (1);  $2 \times q = \frac{4}{2}$  $2q = \frac{4}{3}$   $q = \frac{4}{3\times 2} = \frac{2}{3}$   $\therefore q = \frac{2}{3}$  $P = 1 - q = 1 - \frac{2}{2} = \frac{1}{2}$ np = 2np = 2 $n \times \frac{1}{3} = 2$ n = 6 $\therefore$  n = 6 25. What are the parameters of binomial distribution? **Dec-2009** (c) Both n and p (b) p (d) None of these (a) n Answer: (c) Binomial Distribution is a biparamatric, distribution, characterized by 'n' and 'p' [self-explanatory]. The Variance of standard normal distribution is **June-2010** 26. (c)  $\sigma^2$ (a) 1 (d) 0(b) u Answer: (a) In standard normal distribution Mean = 0Variance = 9For a Poisson distribution P(x = 3) = 5 P(x = 5), then S.D. is **June-2010** 27. (d)  $\sqrt{2}$ (a) 4 (b) 2 (c) 16 Answer: (d) Let x be a Poisson variate with parameter m. The probability function of x is then given by :  $f(x) = \frac{e^{-m}m^x}{x!}$  for x = 0, 1, 2 ..... as now, P(x=3) = 5P(x=5)f(3) = 5f(5) $\frac{e^{-m}m^3}{3!} = \frac{5e^{-m}m^5}{5!}$  $20 = 5m^2$  $m^2 = 4$ Variance = m = 2 $\therefore$  SD =  $\sqrt{Variance}$  $SD = \sqrt{2}$ For a Binomial distribution B (6, p), P(x = 2) = 9p(x = 4), then P is **June-2010 28.** (c) 10/13 (d) <sup>1</sup>⁄<sub>4</sub> (a) 1/2(b)1/3Answer: (d) We are given that n = 6. The probability mass function of x is given by  $f(x) = {}^{n}c_{x} p^{x} q^{n-x}$  $= {}^{6}c_{x} p^{x} q^{6-x}$ , for  $x = 0, 1, 2, \dots, 6$ Thus,  $P(x=2) = f(2) = {}^{6}c_{2} p^{2} q^{6-2} = 15 p^{2} q^{4}$ and  $P(x = 4) = f(4) = {}^{6}c_{4} p^{4} q^{6-4} = 15 p^{4} q^{2}$ Hence, P(x = 2) = 9P(x = 4)

| Probabi | ility (Theoretical) Distribution 38.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GOPAL BHOOT                                             |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| 29.     | $15p^{2}q^{2} (q^{2} - 9p^{2}) = 0$ $q^{2} - 9p^{2} = 0 (as p \neq 0 \text{ and } q \neq 0)$ $(1 - p)^{2} - 9p^{2} = 0 (as q = 1 - p)$ $(1 - p + 3p) = 0 \text{ or } (1 - p - 3q) = 0$ $P = -\frac{1}{2} \text{ or } p = \frac{1}{4}$ Thus, $p = \frac{1}{4} (as p \neq -\frac{1}{2})$ In Binomial distribution $n = 9$ and $P = \frac{1}{3}$ , what is the value of<br>(a) 8 (b) 4 (c) 2<br>Answer:<br>(c) In Binominal distribution,<br>Variance = npq<br>n = 9<br>$p = \frac{1}{3}$<br>$q = \frac{2}{3}$<br>$\therefore \text{ Variance} = 9, \frac{1}{2}, \frac{2}{3} = 2$ | variance: <b>June-2010</b><br>(d) 16                    |
| 30.     | If standard deviation of a poisson distribution is 2, then its<br>(a) Mode is 2 (b) Mode is 4 (c) Modes are 3<br>Answer:<br>(c) Given $\sigma = S.D. = 2 \Rightarrow Variance = \sigma^2 = 4$<br>$\therefore$ In poisson distribution<br>Mean = Variance<br>$\therefore$ m = 4, which is an integer<br>$\therefore$ it is bi-modal<br>Modes are m and (m- 1)<br>hence, 4 and 3.                                                                                                                                                                                                | Dec-2010<br>and 4 (d) Modes are 4 and 5                 |
| 31.     | The area under the Normal curve is<br>(a) 1 (b) 0 (c) 0.5<br>Answer:<br>(a) Area under the Normal curve = 1<br>Area = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Dec-2010<br>(d) -1                                      |
| 32.     | For a normal distribution $N(\mu, \sigma^2)$ , $P(\mu - 3\sigma < x < \mu + 3\sigma)$ is eq<br>(a) 0.9973 (b) 0.9546 (c) 0.9899<br>Answer:<br>(a) We know that<br>$P(\mu - 3\sigma < x < \mu + 3\sigma)$<br>- 0.9973                                                                                                                                                                                                                                                                                                                                                           | qual to <b>Dec-2010</b><br>(d) 0.9788                   |
| 33.     | If for a Binomial distribution B (n. p,)the mean = 6 and Variance<br>(a) 2/3 (b) 1/3 (c) 3/5<br>Answer:<br>(a) Mean = 6 = np<br>Variance = 2 = npq<br>$\frac{npq}{np} = \frac{2}{6} = > q = \frac{1}{3}$<br>For Binomial<br>Distribution                                                                                                                                                                                                                                                                                                                                       | ce = 2 then "p" is <b>Dec-2010</b><br>(d) $\frac{1}{4}$ |

38.5

38.6

 $=\frac{16}{20}$ npq np  $np = \frac{1}{20}$   $q = \frac{4}{5}$  p = 1 - q  $= 1 - \frac{4}{5}$   $P = \frac{1}{5}$ Putting the value of p in eq(1)  $n \times \frac{1}{5} = 20$  $n = 20 \times 5 = 100$ A Company has two cars which it hires out during the day. The number of Cars demanded in 38. a day has poisson distribution with mean 1.5. Then percentage of days on which only one car was in demand is equal to **Dec-2011** b) 33.47 c) 44.62 d) 46.40 a) 23.26 Answer: (**b**) Given the mean Poisson distribution (m) = 1.5Then Poisson parameter ( $\mu$ ) = m = 1.5 We know by Poisson distribution  $P(x) = \frac{e^{-m}m^x}{x!}$ Here m = 1.5, x = 1 $P(1) = \frac{e^{-1.5} \cdot (1.5)}{\frac{1!}{231 \times 1.5}} = \frac{0.2231 \times 1.5}{1}$ = 0.33465= 0.3347% of  $P(1) = 0.3347 \times 100 \% = 33.47\%$ The binominal distribution with mean 3 & variance 2 is : 39. **Dec-2011** b)  $\left(\frac{2}{6} + \frac{1}{6}\right)^{n \to 9}$  c)  $\left(\frac{2}{3} + \frac{1}{3}\right)^{n \to 9}$  d)  $\left(\frac{2}{5} + \frac{1}{5}\right)^{n \to 9}$ a)  $\left(\frac{2}{7}+\frac{1}{7}\right)^{n\to9}$ Answer: (c) Given mean = 3np = 3Variance = 2npq = 2Divide (2)/(1) we get  $\frac{npq}{np} = \frac{2}{3} \Rightarrow q = \frac{2}{3}$ p = 1 - q $p = 1 - \frac{2}{3} = \frac{1}{3}$ Putting the value of p in Equation (1)

$$n \times \frac{1}{3} = 3$$
$$n = 9$$

## **Probability (Theoretical) Distribution**

The Binomial distribution is

$$(q + p)^{n} = \left[\frac{2}{3} + \frac{1}{3}\right]^{9}$$
40. For binomial distribution June-2012  
(a) Variance < Mean (b) Variance =Mean (c) Variance > Mean (d) None of the above  
Answer:  
(a) For Binomial distribution  
npq < np  
Variance < Mean  
41. If x is a Poisson variate and E(x) = 1, then P(x > 1) is June-2012  
(a)  $1 - \frac{e^{-1}}{2}$  (b)  $1 - e^{-1}$  (c)  $1 - 2e^{-1}$  (d)  $1 - \frac{5}{2}e^{-1}$   
Answer:  
(c) E(x) = 1, we know P(x) =  $\frac{e^{-m}m^{x}}{\lfloor n_{x}}$ ; E(x) = m  
 $\therefore P(x > 1) = 1 - P(x < 1)$   
 $= 1 - [P(x = 0) + P(x = 1)]$   
 $= 1 - [e^{-1.20} + e^{-1.21}]$   
 $= 1 - [e^{-1.20} + e^{-1.21}]$   
 $= 1 - 2e^{-1}$   
42. The mean and the variance of a random variable X having the probability density function  
 $P(X - x) = \exp\{-(x - 4)^{2}\}/\sqrt{\pi}, -\infty < x < \infty$  is. June-2012  
(a)  $4, \frac{1}{2}$  (b)  $4, \frac{1}{\sqrt{2}}$  (c)  $2, 2$  (d)  $2, \frac{1}{2}$   
Answer:  
(a) We know, the probability distribution function for normal distribution is:  
 $P(X = x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(x-\mu)^{2}}, -\infty < x < \infty$   
Given in equation:  
 $P(X = x) = \frac{1}{\sqrt{\pi}}e^{-(x-4)^{2}}$   
Comparing given function with the standard form, we get  
Mean (u)  $= 4$   
S.D. ( $\sigma$ )  $= \frac{1}{\sqrt{2}}$   
43. In a Normal Distribution  
(a) The first and second quartile are equidistant from median  
(b) The second and third quartiles are equidistant from the median  
(c) The first and third quartiles are equidistant from the median  
(c) The first and third quartiles are equidistant from the median

(d) None of the above

44. If parameters of a binomial distribution are n and p then, this distribution tends to a Poisson distribution when
 Dec-2012

(a) 
$$n \to \infty$$
,  $p \to 0$   
(b)  $p \to 0$ ,  $np = \lambda$   
(c)  $n \to \infty$ ,  $np = \lambda$   
(d)  $n \to \infty$ ,  $p \to 0$ ,  $np = \lambda$   
Answer:

(d) If parameters of a binomial distribution are n and p then this distribution tends to a Poisson distribution

when

 $n \rightarrow \infty, p \rightarrow 0, np = A$ 

Where 'A' is a finite constant

**45.** If a random variable x follows Poisson distribution such that E(x) = 30, the variance of the distribution is **Dec-2012** 

GOPAL BHOOT

38.7

|            | ility (Theoretical) Dist                                                                                                                                                                                                                                     | tribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 38.8                                                                                                                           |                                                                                      | <b>GOPAL BHOOT</b>                                           |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------|
|            | (a) 7                                                                                                                                                                                                                                                        | (b) 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (c) 30                                                                                                                         | (d) 20                                                                               |                                                              |
|            | Answer:                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                | (a) = c                                                                              |                                                              |
|            | (c) In Poisson di                                                                                                                                                                                                                                            | stribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                |                                                                                      |                                                              |
|            | Mean = Vari                                                                                                                                                                                                                                                  | ance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                |                                                                                      |                                                              |
|            | E(x) = 30                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                |                                                                                      |                                                              |
|            | Mean = E(x)                                                                                                                                                                                                                                                  | ) = 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                |                                                                                      |                                                              |
|            | So, Variance                                                                                                                                                                                                                                                 | e = 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                |                                                                                      |                                                              |
| 46.        | In a normal distribution                                                                                                                                                                                                                                     | on quartile deviation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | is 6, the standard deviat                                                                                                      | ion will be                                                                          | <b>Dec-2012</b>                                              |
|            | (a) 4                                                                                                                                                                                                                                                        | (b) 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (c) 7.5                                                                                                                        | (d) 6                                                                                |                                                              |
|            | Answer:                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                |                                                                                      |                                                              |
|            | ( <b>b</b> ) In normal dis                                                                                                                                                                                                                                   | stribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                |                                                                                      |                                                              |
|            | 4  S.D. = 60                                                                                                                                                                                                                                                 | Į.D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                |                                                                                      |                                                              |
|            | S.D. $=\frac{6}{4}$                                                                                                                                                                                                                                          | Q.D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                |                                                                                      |                                                              |
|            | $=\frac{6}{6}$                                                                                                                                                                                                                                               | ×6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                |                                                                                      |                                                              |
|            | 4<br>- C                                                                                                                                                                                                                                                     | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                |                                                                                      |                                                              |
| 47         | The mode of the Bin                                                                                                                                                                                                                                          | ,<br>omial Distribution f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | or which the mean is 4                                                                                                         | and variance                                                                         | 3 is equal to?                                               |
|            | June-2013                                                                                                                                                                                                                                                    | onnui Distribution I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | or which the mean is 4                                                                                                         | and variance                                                                         | 5 15 equal 10:                                               |
|            | a) 4                                                                                                                                                                                                                                                         | b) 4.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | c) 4.5                                                                                                                         | d) 4.1                                                                               |                                                              |
| 48.        | For Poisson Distribut                                                                                                                                                                                                                                        | ion:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •) 1.3                                                                                                                         | u)                                                                                   | June-2013                                                    |
|            | a) Mean and Standard                                                                                                                                                                                                                                         | Deviations are equa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | al b) Mean and varian                                                                                                          | ce are equal                                                                         |                                                              |
|            | c) Standard Deviation                                                                                                                                                                                                                                        | and variance are eq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ual d) Both (a) and (b)                                                                                                        | are correct                                                                          |                                                              |
| 49.        | Which of the following                                                                                                                                                                                                                                       | ng is not a characteris                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | stic of a normal probabil                                                                                                      | ity distributio                                                                      | n? June-2013                                                 |
|            | a) Mean of the norma                                                                                                                                                                                                                                         | lly distributed popul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ation lies at the centre of                                                                                                    | f its normal cu                                                                      | irve.                                                        |
|            | b) It is multi-modal                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                |                                                                                      |                                                              |
|            | c) The mean, median                                                                                                                                                                                                                                          | and mode are equal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                |                                                                                      |                                                              |
|            | d) It is a symmetric cu                                                                                                                                                                                                                                      | urve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                |                                                                                      |                                                              |
| 50.        | An approximate relat                                                                                                                                                                                                                                         | tion between quartil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e deviation (QD) and s                                                                                                         | standard devia                                                                       | tion (S.D.) of                                               |
|            | normal distribution is                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                |                                                                                      | June-2013                                                    |
|            | a) 5 QD = 4 SD                                                                                                                                                                                                                                               | b) 4 QD = 5 SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | c) $2 \text{ QD} = 3 \text{ SD}$                                                                                               | d) 3 QD =                                                                            | 2 SD                                                         |
|            | Answer:                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                |                                                                                      |                                                              |
|            | ( <b>a</b> ) we know that                                                                                                                                                                                                                                    | atribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                |                                                                                      |                                                              |
|            | 4  SD - 5  M                                                                                                                                                                                                                                                 | $D = 6 \Omega D$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                |                                                                                      |                                                              |
|            | 4  S.D = 5  M                                                                                                                                                                                                                                                | $A \cap D$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                |                                                                                      |                                                              |
|            | 2  S.D =                                                                                                                                                                                                                                                     | 3 Q D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                |                                                                                      |                                                              |
|            | or 3 0.D =                                                                                                                                                                                                                                                   | - 280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                |                                                                                      |                                                              |
|            |                                                                                                                                                                                                                                                              | - 2 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                |                                                                                      |                                                              |
| 51.        | In a certain Poisson f                                                                                                                                                                                                                                       | requency distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n, the probability corres                                                                                                      | ponding to tw                                                                        | o successes is                                               |
| 51.        | In a certain Poisson f<br>half the probability co                                                                                                                                                                                                            | requency distribution<br>prresponding to three                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n, the probability corres<br>successes. The mean of                                                                            | ponding to tw<br>the distributi                                                      | o successes is on is <b>Dec-</b>                             |
| 51.        | In a certain Poisson f<br>half the probability cc<br>2013                                                                                                                                                                                                    | requency distribution<br>prresponding to three                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n, the probability corres<br>successes. The mean of                                                                            | ponding to tw<br>the distributi                                                      | o successes is on is <b>Dec-</b>                             |
| 51.        | In a certain Poisson f<br>half the probability co<br>2013<br>(a) 6                                                                                                                                                                                           | (b) 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n, the probability corres<br>e successes. The mean of<br>(c) 3                                                                 | ponding to tw<br>the distributi<br>(d) 2.45                                          | o successes is<br>on is <b>Dec-</b>                          |
| 51.        | In a certain Poisson f<br>half the probability co<br>2013<br>(a) 6<br>Answer:                                                                                                                                                                                | Trequency distribution<br>prresponding to three<br>(b) 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n, the probability corres<br>e successes. The mean of<br>(c) 3                                                                 | ponding to tw<br>the distributi<br>(d) 2.45                                          | o successes is on is <b>Dec-</b>                             |
| 51.        | In a certain Poisson f<br>half the probability co<br>2013<br>(a) 6<br>Answer:<br>(a) Given                                                                                                                                                                   | requency distribution<br>prresponding to three<br>(b) 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n, the probability corres<br>e successes. The mean of<br>(c) 3                                                                 | ponding to tw<br>the distributi<br>(d) 2.45                                          | o successes is<br>on is <b>Dec-</b>                          |
| 51.        | In a certain Poisson f<br>half the probability co<br>2013<br>(a) 6<br>Answer:<br>(a) Given<br>$P(x=2) = \frac{1}{2}$                                                                                                                                         | requency distribution<br>prresponding to three<br>(b) 12<br>P(x =3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n, the probability corres<br>e successes. The mean of<br>(c) 3                                                                 | ponding to tw<br>the distributi<br>(d) 2.45                                          | o successes is<br>on is <b>Dec-</b>                          |
| 51.        | In a certain Poisson f<br>half the probability co<br>2013<br>(a) 6<br>Answer:<br>(a) Given<br>$P(x = 2) = \frac{1}{2}$<br>2 $P(x = 2) =$                                                                                                                     | requency distribution<br>prresponding to three<br>(b) 12<br>P(x =3)<br>= P(x =3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n, the probability corres<br>e successes. The mean of<br>(c) 3                                                                 | ponding to tw<br>the distributi<br>(d) 2.45                                          | o successes is<br>on is <b>Dec-</b>                          |
| 51.        | In a certain Poisson f<br>half the probability co<br>2013<br>(a) 6<br>Answer:<br>(a) Given<br>$P(x = 2) = \frac{1}{2}$<br>2 $P(x = 2) =$<br>2 $\frac{e^{-m} \cdot m^2}{2} =$                                                                                 | P(x =3)<br>$e^{-m} \cdot m^{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n, the probability corres<br>e successes. The mean of<br>(c) 3                                                                 | ponding to tw<br>the distributi<br>(d) 2.45                                          | o successes is<br>on is <b>Dec-</b>                          |
| 51.        | In a certain Poisson f<br>half the probability co<br>2013<br>(a) 6<br>Answer:<br>(a) Given<br>$P(x = 2) = \frac{1}{2}$<br>2 $P(x = 2) =$<br>2. $\frac{e^{-m} \cdot m^2}{2!} =$                                                                               | Frequency distribution<br>prresponding to three<br>(b) 12<br>$P(x = 3) = P(x = 3) = \frac{e^{-m} \cdot m^3}{m^{3!}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n, the probability corres<br>e successes. The mean of<br>(c) 3                                                                 | ponding to tw<br>the distributi<br>(d) 2.45                                          | o successes is<br>on is <b>Dec-</b>                          |
| 51.        | In a certain Poisson f<br>half the probability co<br>2013<br>(a) 6<br>Answer:<br>(a) Given<br>$P(x = 2) = \frac{1}{2}$<br>2 $P(x = 2) =$<br>2. $\frac{e^{-m.m^2}}{2!} =$<br>$\frac{2}{2}$                                                                    | P(x =3)<br>$e^{-2.5.D}$<br>$e^{-2.5.D}$<br>$e^{-2.5.D}$<br>(b) 12<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1.5}$<br>$e^{-1$ | n, the probability corres<br>e successes. The mean of<br>(c) 3                                                                 | ponding to tw<br>the distributi<br>(d) 2.45                                          | o successes is<br>on is <b>Dec-</b>                          |
| 51.        | In a certain Poisson f<br>half the probability co<br>2013<br>(a) 6<br>Answer:<br>(a) Given<br>$P(x=2) = \frac{1}{2}$<br>2 $P(x=2) =$<br>2. $\frac{e^{-m} \cdot m^2}{2!} =$<br>$\frac{2}{2} =$<br>m =                                                         | P(x =3)<br>$= P(x =3)$ $= P(x =3)$ $= \frac{e^{-m} \cdot m^{3}}{3!}$ $= \frac{m}{6}$ $= 6 \times \frac{2}{-} = 6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n, the probability corres<br>e successes. The mean of<br>(c) 3                                                                 | ponding to tw<br>the distributi<br>(d) 2.45                                          | o successes is<br>on is <b>Dec-</b>                          |
| 51.        | In a certain Poisson f<br>half the probability co<br>2013<br>(a) 6<br>Answer:<br>(a) Given<br>$P(x=2) = \frac{1}{2}$<br>2 $P(x=2) =$<br>2. $\frac{e^{-m.m^2}}{2!} =$<br>$\frac{2}{2} =$<br>m =                                                               | P(x =3)<br>$\frac{e^{-m} \cdot m^{3}}{\frac{m}{6}} = 6 \times \frac{2}{2} = 6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n, the probability corres<br>e successes. The mean of<br>(c) 3                                                                 | ponding to tw<br>the distributi<br>(d) 2.45                                          | To successes is<br>on is <b>Dec</b> -                        |
| 51.        | In a certain Poisson f<br>half the probability co<br>2013<br>(a) 6<br>Answer:<br>(a) Given<br>$P(x=2) = \frac{1}{2}$<br>2 $P(x=2) =$<br>2. $\frac{e^{-m} \cdot m^2}{2!} =$<br>$\frac{2}{2} =$<br>m =<br>Mean & Variance of                                   | P(x =3)<br>$= 6 \times \frac{2}{2} = 6$<br>$= 6 \times \frac{2}{2} = 6$<br>$= 2 \times \frac{10}{2}$<br>$= 6 \times \frac{2}{2} = 6$<br>$= 6 \times \frac{2}{2} = 6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n, the probability corres<br>e successes. The mean of<br>(c) 3<br>e are 4 and $\frac{4}{3}$ respectiv                          | ponding to tw<br>the distributi<br>(d) 2.45<br>(d) vely then P(                      | to successes is<br>on is <b>Dec</b> -<br>$x \ge 1$ will be   |
| 51.<br>52. | In a certain Poisson f<br>half the probability co<br>2013<br>(a) 6<br>Answer:<br>(a) Given<br>$P(x = 2) = \frac{1}{2}$<br>2 $P(x = 2) =$<br>2. $\frac{e^{-m.m^2}}{2!} =$<br>$\frac{2}{2} =$<br>m =<br>Mean & Variance of<br>                                 | P(x =3)<br>$= 6 \times \frac{2}{2} = 6$<br>$= 6 \times \frac{2}{2} = 6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n, the probability corres<br>e successes. The mean of<br>(c) 3<br>e are 4 and $\frac{4}{3}$ respectiv                          | ponding to tw<br>the distributi<br>(d) 2.45<br>vely then P(:                         | to successes is<br>on is <b>Dec</b> -<br>$x \ge 1$ will be   |
| 51.<br>52. | In a certain Poisson f<br>half the probability co<br>2013<br>(a) 6<br>Answer:<br>(a) Given<br>$P(x=2) = \frac{1}{2}$<br>2 $P(x=2) =$<br>2. $\frac{e^{-m}.m^2}{2!} =$<br>$\frac{2}{2} =$<br>m =<br>Mean & Variance of<br>. June-2014<br>(a) $\frac{728}{729}$ | P(x =3)<br>$= 6 \times \frac{2}{2} = 6$<br>(b) $\frac{1}{729}$<br>$= \frac{1}{729}$<br>$= \frac{1}{2} + \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n, the probability corres<br>e successes. The mean of<br>(c) 3<br>e are 4 and $\frac{4}{3}$ respectiv<br>(c) $\frac{723}{729}$ | ponding to tw<br>the distributi<br>(d) 2.45<br>(d) vely then <i>P</i> (:<br>(d) None | to successes is<br>on is <b>Dec</b> -<br>$x \ge 1$ ) will be |

### **Probability (Theoretical) Distribution**

#### 38.9

(a) For Binomial Variable  
Mean = np = 4 ......(1)  
Variance = npq = 
$$\frac{4}{3}$$
 ......(2)  
From (1) & (2)  
 $4 \times q = \frac{4}{3}$   
 $q = \frac{1}{3}$   
 $p = 1 - \frac{1}{3} = \frac{2}{3}$   
 $np = 4$   
 $n \times \frac{2}{3} = 4$   
 $n = \frac{12}{2} = 6$   
 $p(x \ge 1) = 1 - p(x < 1)$   
 $= 1 - p(x = 0)$   
 $= 1 - {}^{6}C_{0} \cdot (\frac{2}{3})^{0} \cdot (\frac{1}{3})^{6}$   
 $= 1 - |x| \times \frac{1}{720} = 1 - \frac{1}{720} = \frac{728}{720}$ 

5,000 students were appeared in an examination. The mean of marks was 39.5 with Standard **53.** Deviation 12.5 marks. Assuming the distribution to be normal, find the number of students recorded more than 60% marks **June-2014** 

[Given: When Z = 1.6, Area of normal curve = 0.4494] b) 505 a) 1,000 c) 253 d) 2,227 Answer:

(c) Probability that students recorded more than 60% marks = P(x > 60)

$$= 1 - P(x \le 60)$$
  
= 1 - P $\left(\frac{x - \bar{x}}{\sigma} \le \frac{60 - 39.5}{12.5}\right)$   
= 1 - P(Z \le 1.64)  
= 1 -  $\phi$ (1.64)  
= 1 - (0.4495 + 0.5)  
= 1 - 0.9495  
= 0.0505  
Thus, the Number of students 1

Thus, the Number of students having marks more than 60 %

$$= 5000 \times 0.0505$$

= 252.5

If a variate X has, mean > variance, then its distribution will be \_\_\_\_\_ 54. **June-2014** a) Binomial distribution b) Poisson distribution c) Normal distribution d) t-distribution Answer:

(a) In Binomial distribution

Mean > Variance

b)  $\frac{63}{64}$ 

 $\begin{array}{l} \text{com } p = \frac{72}{72}, q = 1 - \frac{72}{72} - \frac{72}{72} \\ P(X = x) &= {}^{n}C_{x} p^{x} \cdot q^{n \cdot x} \\ P(X = 2) &= {}^{6}C_{2} \left(\frac{1}{2}\right)^{2} \times \left(\frac{1}{2}\right)^{6-2} \\ &= \frac{6 \times 5}{2 \times 1} \times \left(\frac{1}{2}\right)^{2} \times \left(\frac{1}{2}\right)^{4} \\ &= 15 \times \left(\frac{1}{2}\right)^{2+4} \end{array}$ 

For coin  $p=1\!\!\!/_2$  ,  $q=1-1\!\!\!/_2=1\!\!\!/_2$ 

55. If six coins are tossed simultaneously. The probability of obtaining exactly two heads are : **Dec-2014** c)  $\frac{15}{64}$ 

Answer:  
(c) Here Total trial (n) = 6  
For coin p = 
$$\frac{1}{2}$$
, q = 1  
P(X = x) =  ${}^{n}C_{x}$  p  
P(X = 2) =  ${}^{6}C_{2}$  (  
 $= \frac{6\times5}{2\times1}$ 

a)  $\frac{1}{-}$ 

d) None of these

38.10

 $= 15 \times \left(\frac{1}{2}\right)^6$  $= \left(\frac{15}{64}\right)$ 

- **56.** If X and Y are two independent Normal random variables, then the distribution of X+Y is **Dec-2014** 
  - a) Normal distribution b) T-distribution c) Chi-Square distribution d) F-distribution
- 57. For a normal distribution having mean = 2 and variance = 4, the fourth central moment  $\mu_4$  is : Dec-2014
  - a) 16 b) 32 c) 48 d) 64

Answer:

(c) For Normal Distribution Mean = 2, Variance = 4 Fourth central moments  $\mu_4 = ?$ We know that Normal curve is always Meso kuritic then  $\beta_2 = 3$ moment coefficient of kurtosis  $(\beta_2) = \frac{\mu_4}{\mu_2^2}$ Here,  $\mu_2 = \text{Variance} = 4, \beta = 3$   $3 = \frac{\mu_4}{4^2}$   $\mu_4 = 3 \times 4^2 = 3 \times 16 = 48$ Shortcut: Fourth moments  $\mu_4 = 3\sigma^4 = 3(4)^2 = 48$ 

- 58. For a Binomial distribution with mean = 4 and variance = 3, the 3rd central moment  $\mu_3$  is **Dec-2014**
- a) 5/2 b) 7/4 c) 3/2d) 1/3 **59**. If x is a binomial variable with parameters n and p, then x can assume June-2015 a) Any value between 0 and n b) Any value between 0 and n, both inclusive c) Any whole number between 0 and n, both inclusive d) Any number between 0 and infinity **60.** \_\_\_\_\_ distribution, mean = variance **June-2015** In a) Normal b) Binomial c) Poisson d) None **61**. Under a normal curve  $x \pm 3\sigma$  covers \_\_\_\_\_ **June-2015** b) 99% a) 100% of the area (item values) c) 99.73% d) 99.37% If 'x' is a binomial variable with parameter 15 and 1/3, then the value of the mode of the **62. Dec-2015** distribution : a) 5 b) 5 and 6 c) 5.50 d) 6 Answer: (a) In Binomial Variable (Distribution)  $x \sim B(n, p)$  $x \sim B(15, \frac{1}{3})$  $n = 15, P = \frac{1}{3}$ Mode = (n + 1) P $=(15+1).\frac{1}{3}$ =  $16 \times \frac{1}{3}$  = 5.33 (which is non Integer) = 5 Standard deviation of binomial distribution is : **63**. **Dec-2015** d)  $(npq)^{2}$ a)  $\sqrt{np}$ **b**)  $(np)^2$ c)  $\sqrt{npq}$ The wages of workers of factory follows : **Dec-2015 64**. a) Binomial distribution b) Poisson distribution

| Probabi | lity (Theoretical) Distribution                                                | 38.11                                        | <b>GOPAL BHOOT</b>               |
|---------|--------------------------------------------------------------------------------|----------------------------------------------|----------------------------------|
|         | c) Normal distribution                                                         | d) Chi-square distribu                       | tion                             |
| 65.     | The normal curve is:                                                           | / 1                                          | <b>June-2016</b>                 |
|         | a) Positively skewed b) Negatively ske                                         | ewed c) Symmetrical                          | d) All these                     |
| 66.     | For a Poisson variate X, $P(X = 1) = P(X = 1)$                                 | $= 2$ ), what is the mean of $\Sigma$        | <b>K</b> ? <b>June-2016</b>      |
|         | a) 1 b) 3/2                                                                    | c) 2                                         | d) 5/2                           |
|         | Answer:                                                                        |                                              |                                  |
|         | (c) For $x \sim P(m)$<br>P(y = 1) - P(y = 2)                                   |                                              |                                  |
|         | r(x-1) = r(x-2)<br>$e^{-m}.m^1 = e^{-m}.m^2$                                   |                                              |                                  |
|         | -1! = -2!                                                                      |                                              |                                  |
|         | $\frac{m}{1} = \frac{m^2}{2}$                                                  |                                              |                                  |
|         |                                                                                |                                              |                                  |
|         | m = 2                                                                          |                                              |                                  |
| 67      | In a discrete random variable V follows                                        | uniform distribution and as                  | source only the values 9         |
| 07.     | In a discrete random variable A follows<br>9 11 15 18 20 Then $P(X \le 15)$ is | unitorin distribution and as                 | June-2016                        |
|         | a) $1/2$ b) $1/3$                                                              | - c) $2/3$                                   | d) 2/5                           |
|         | Answer:                                                                        | 0) 2:0                                       | (1) 2, 0                         |
|         | (c) Given data                                                                 |                                              |                                  |
|         | 8, 9, 11, 15, 18, 20                                                           |                                              |                                  |
|         | Total No. of data $n(s) = 6$                                                   |                                              |                                  |
|         | $P(x \le 15) = \frac{n(A)}{n(B)} = \frac{4}{6} = \frac{2}{3}$                  |                                              |                                  |
| 68.     | If x and y are independent normal variat                                       | es with mean and Standard                    | Deviation as $\mu_1$ and $\mu_2$ |
|         | and $\sigma_1$ and $\sigma_2$ respectively, then $z = x + y$                   | y also follows normal distri                 | bution with <b>Dec-2016</b>      |
|         | a) Mean = $\mu_1 + \mu_2$ and S.?D. = 0 respect                                | ively b) Mean $= 0$ and S.D.                 | $= \sigma_1^2 + \sigma_2^2$      |
|         | c) Mean= $\mu + \mu_2$ and S.D. = $\sqrt{\sigma_1^2 + \sigma_2^2}$             | d) None of these.                            |                                  |
|         | Answer:                                                                        | ,                                            |                                  |
|         | (c) If x and y are two Independent va                                          | ariables of Normal Distribu                  | ition                            |
|         | if $x \sim N(\mu_1, \sigma_1^2)$                                               |                                              |                                  |
|         | and $y \sim N(\mu_2, \sigma_2^2)$                                              |                                              |                                  |
|         | then $z = x + y$                                                               |                                              |                                  |
|         | $z = N(\mu_1, \sigma_1^2) + N(\mu_2, \sigma_2^2)$                              |                                              |                                  |
|         | $z = N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$                                | $-\pi^{2}+\pi^{2}$                           |                                  |
|         | We all $-\mu_1 + \mu_2$ , Variance                                             | $-0_1 + 0_2$                                 |                                  |
| 60      | $S.D = \sqrt{\sigma_1^2 + \sigma_2^2}$                                         | Variance                                     | Dec 2016                         |
| 09.     | (a) Bionomial (b) Poisson                                                      | (c) Normal                                   | (d) Chi-square                   |
| 70.     | An example of a bi-parametric probabilit                                       | v distribution:                              | Dec-2016                         |
|         | (a) Bionomial (b)Poisson                                                       | (c)Normal                                    | (d) (a) and (c)                  |
| 71.     | If x $\sim$ N (50, 16), then which of the follow                               | ving is not possible:                        | <b>June-2017</b>                 |
|         | a) P (x >60) = 0.002                                                           | b) P (x <50) = 0.50                          |                                  |
|         | c) $P(x < 60) = 0.40$                                                          | d) P (x >50) = $0.50$                        |                                  |
| 72.     | If for a distribution mean = variance, ther                                    | the distribution is said to b                | be: June-2017                    |
| 50      | a) Normal b) Binomial                                                          | c) Poisson                                   | d) None of the above             |
| 73.     | For a binomial distribution if variance = $(2017)$                             | $(mean)^2$ , then the values of $1$          | n and p will be: June-           |
|         | a) 1 and $1/2$ b) 2 and $1/2$                                                  | c) 3 and $1/2$                               | d) 1 and 1                       |
| 74.     | In normal distribution 95% observations                                        | lies between &                               | : Dec-2017                       |
|         | (a) $(\mu - 2\sigma, \mu + 2\sigma)$                                           | (b) $(\mu - 3\sigma \mu + 3\sigma)$          |                                  |
|         | (c) ( $\mu$ - 1.96 $\sigma$ , $\mu$ + 1.96 $\sigma$ )                          | (d) $(\mu - 2.58 \sigma, \mu + 2.58 \sigma)$ | 58 σ)                            |
| 75.     | An example of a bi-parametric discrete pr                                      | robability distribution is:                  | <b>Dec-2017</b>                  |

**Probability (Theoretical) Distribution** 38.12 **GOPAL BHOOT** (a) Binomial distribution (b) Poisson distribution (d) Both (a) & (b) (c) Normal distribution distribution, mean = variance: 76. In **Dec-2017** (b) Poisson (c) Normal (d) None of these (a) Binomial 77. The variance of a binomial distribution with parameters n and p is : **May-2018** (a)  $np^2(1-p)$ (b)  $\sqrt{np - (l - p)}$ (d)  $n^2 p^2 (1-P)^2$ (c) nq(1-q)78. X is a poisson variate satisfying the following condition 9 P(X = 4) + 90 (X = 6) = P (X = 2). What is the value of  $P(X \le 1)$ ? **May-2018** (a) 0.5655 (b) 0.6559 (c) 0.7358(d) 0.8201 **Answer:** (c) Given  $X \sim P(m)$ P(x=2) = 9 P(x=4) + 90 P(x=6) $\frac{e^{-m} m^2}{2} = \frac{9 \cdot e^{-m} m^4}{2} + \frac{90 \cdot e^{-m} m^6}{2}$ 2! 4!  $\frac{1}{2} + \frac{9.e^{-m}.m^4}{2} - \frac{e^{-m}.m^2}{2}$  $90.e^{-m}.m^6$ = 06!  $e^{-m} m^2 \left[\frac{90.m^4}{2} + \right]$  $\frac{9.m^2}{4!}$ 6!  $9.m^{2}$ [90.m<sup>4</sup>  $e^{-m}.m^2$ 720  $e^{-m}.m^2$  [90.m<sup>4</sup>  $9.m^2$ - 1 = 0360 12  $\frac{e^{-m}.m^2}{2}\left[\frac{m^4}{4}\right]$  +  $\frac{3m^2}{4}$ -1 = 0 $-m.m^{2}$  $m^4+3m^2$  $\frac{e^{-m}m^2}{m^2}(m^4+3m^2-4)=0$  $m^4 + 3m^2 - 4 = 0$  $m^4 + 4m^2 - m^2 - 4 = 0$  $m^{2}(m^{2}+4) - 1(m^{2}+4) = 0$  $(m^2 + 4)(m^2 - 1) = 0$ if  $m^2 + 4 = 0$  if  $m^2 - 1 = 0$  $m^2 = -4$  if  $m^2 = +1$  $m^2 = \pm \sqrt{1}$  $m^2 = +1$ m = (: m > 0)79. An example of a bi-parametric discrete probability distribution is **May-2018** (a) binomial distribution (b) Poisson distribution (c) normal distribution (d) both (a) and (b) Probability distribution may be 80. **May-2018** (a) discrete (b) continuous (c) infinite (d) (a) or (b) If the area of standard normal curve between z = 0 to z = 1 is 0.3413, then the value of  $\phi(1)$ **81**. is. May-2018 (a) 0.5000 (b) 0.8413 (c) - 0.5000(d) 1 For a Poisson variate X, P(X = 2) = 3P(X = 4), then the standard deviation of X is Nov-2018 82. (b) 4 (c)  $\sqrt{2}$ (d) 3(a) 2Answer: (c) For a Poission Variate X, P(x = 2) = 3P(x = 4), $e^{-m}m^2$   $3e^{-m}m^4$ 2!  $m^2$  $3m^4$ 2 24  $6 \,\mathrm{m}^4$  $= 24m^2$ 24  $m^2$ =6 m<sup>2</sup> = 4
m S.D =  $\sqrt{m} = \sqrt{2}$ 83. The mean of the Binomial distribution B  $\left(4,\frac{1}{3}\right)$  is equal to Nov-2018 (a)  $\frac{3}{5}$  (b)  $\frac{8}{3}$  (c)  $\frac{3}{4}$  (d)  $\frac{4}{3}$ If for a normal distribution  $Q_1 = 54.52$  and  $Q_3 = 78.86$ , then the median of the distribution 84. Nov-2018 (b) 39.43 (a) 12.17 (c) 66.69 (d) None of these Answer: For a Normal Distribution (c)  $Q_1 = 54.52$  $Q_3 = 78.86$ and We known that  $Q_1 = \mu - 0.675 = 54.52$  .....(1)  $Q_3 = \mu - 0.675 = 78.86$  .....(2) On Adding \_\_\_\_  $2\mu = 133.38$  $\mu = \frac{133.38}{2}$  $\mu = 66.69$ In Normal Distribution Mean, Median and Mode are equal. Median = Mean = 66.69So. 85. What is the mean of X having the following density function? Nov-2018  $(x) = \frac{1}{4\sqrt{2x}} e^{\frac{(x-10)^2}{32}}$  for  $-\infty < x < \infty$ (a) 10 (b) 4(c) 40 (d) None of the above Answer: (a) Given Normal distribution  $f(x) = \frac{1}{4\sqrt{2\pi}} e^{\frac{-(x-10)^2}{32}}$  for  $-\infty < x < \infty$ On comparing from  $f(x) = \frac{1}{\sigma \sqrt{2\pi}} \cdot e^{\frac{-(x-\mu)^2}{2\sigma^2}}$ We get: Mean  $(\mu) = 10$ The probability that a student is not a swimmer is  $\frac{1}{5}$ , then the probability that out of five 86. students four are swimmer is Nov-2018 (a)  $\left(\frac{4}{5}\right)^4 \left(\frac{1}{5}\right)^4$ (b)  ${}^{5}C_{1}\left(\frac{1}{r}\right)^{4}\left(\frac{4}{r}\right)$ (c)  ${}^{5}C_{4}\left(\frac{4}{r}\right)^{1}\left(\frac{1}{r}\right)^{4}$ (d) None of the above Answer: (d) Given : Probability that a student is not a swimmer (q) =  $\frac{1}{5}$ Probability that a student is a swimmer (p) =  $1 - q = 1 - \frac{1}{5} = \frac{4}{5}$ Total No. of students (n) = 5P(Exactly 4 students are swimmer)  $= P(x = 4) = {}^{5}C_{4} \cdot \left(\frac{4}{5}\right)^{4} \left(\frac{1}{5}\right)^{1}$ { $: P(x = n) = {}^{n}c_{x} . p^{x} . q^{n-x}$ } So, ans. (d) 4 coins were tossed 1600 time. What is the probability that all 4 coins do not turn head 87. upward at a time? **June-2019** (c)  $100 e^{-1600}$ (d)  $e^{-100}$ (b) 1000  $e^{-100}$ (a) 1600  $e^{-100}$ **Answer:** (d) Probability of getting a head in a throw of a coin =  $\frac{1}{2}$ 

Probability of getting 4 heads in a throw of four coins  $=\frac{1}{2^4}=\frac{1}{16}$ Here, n = 1600Mean = m = np $= 1600 \times \frac{1}{16}$ = 100P(No. Head) = P(X 20) $= \frac{e^{-100.(100)^{0}}}{{}^{01}}$  $= \frac{e^{-100.1}}{{}^{1}}$  $= e^{-100}$ If mean and variance are 5 and 3 respectively then relation between p and q is : **June-2019** (d) p is symmetric (a) p > q(b) p < q(c)  $\mathbf{p} = \mathbf{q}$ Answer: (b) Mean = 5, Variance np = 5 ...(1), npq = 3Variance = 3...(2)

$$eq(2)/eq(1) 
\frac{npq}{np} = \frac{3}{5} 
q = 3/5 
p = 1 -q 
= 1 - 3/5 = 2/5 
Here, p < q$$

- 89. In a Poisson distribution if P(x = 4) = P(x = 5) then the parameter of Poisson distribution is : June-2019
  - (a)  $\frac{4}{5}$  (b)  $\frac{5}{4}$  (c) 4 (d) 5

Answer:

88.

(d) In Poisson distribution

P(x = 4)  

$$\frac{e^{-m}m^{4}}{4!} = \frac{e^{-m}m^{5}}{5!}$$

$$\frac{\frac{1}{4!}}{\frac{1}{24}} = \frac{m}{\frac{5!}{120}}$$

$$24m = 120$$

$$m = 5$$

**90.** If the points of inflexion of a normal curve are 40 and 60 respectively, then its mean deviation is **June-2019** 

(a) 8 (b) 45 (c) 50 (d) 60

Answer:

(a) If the point of Inflexion of a Normal Distribution are 40 and 60.

Then

 $\mu - \sigma = 40$ \_\_\_\_(1)  $\mu + \sigma = 60$ (2)Solving eq.(1) and eq.(2) we get  $\mu = 50$ ,  $\sigma = 10$ Then M.O =  $\frac{4}{5}$  S.D.  $=\frac{4}{5}\times 10$ = 8Area under  $M + 3\sigma$ **Nov-2019** (b) 99% (c) 100% (a) 99.73% (d) 99.37%

Answer:

**91.** 

(a) We know that 99.73 per cent of values of a normal variable lies between  $(u - 3\sigma)$ 

and  $(u + 3\sigma)$ Thus probability that a value of x lies. Outside the limit is as low as (100 - 99.73) =0.27% 92. For a Poisson distribution : Nov-2019 (a) Mean and SD are equal (b) Mean and variance are equal (c) SD and Variance (d) Both a and b Answer: (b) Poisson distribution is theoretical discrete probability distribution which can describe many processes Mean is given by m.i.e, U = mVariance is also given by m.i.  $\sigma^2 = m$ So in pass on distribution mean and variance are equal. Find mode when  $n = 15 p = \frac{1}{4}$  in binomial distribution? **93.** Nov-2019 (a) 4(b) 4 and 3 (c) 4.2(d) 3.75 Answer: (**b**) In binomial distribution, m = (n + 1) p $m = (15 + 1) \times \frac{1}{4}$ m = 4Since 4 is a integar so there. will 2 modes 4 and (4 - 1)Mode = 4 and 3In Poison distribution, if P (x = 2) =  $\frac{1}{2}$  P (x = 3) find m? 94. Nov-2019 (b) 1/6 (a) 3(c) 6(d) 1/3Answer: (c) In Poisson distribution  $P(x = x) = \frac{e^{-m} \cdot m^2}{r!}$ Here  $P(x = 2) = \frac{1}{2}P(x = 3)$  $\frac{e^{-m} \cdot m^2}{2!} = \frac{1}{2} \times \frac{e^{-m} \cdot m^3}{3!}$  $\frac{e^{-m} \cdot m^2}{2!} = \frac{1}{2} \frac{x e^{-m} \cdot m^3}{2 \times 6}$ m = 6In a binomial distribution B(n, p)**95**. **Nov-2019** n = 4  $P(x = 2) = 3 \times P(x = 3)$  find p (a) 1/3(b) 2/3(c) 6/4(d) 4/3**Answer:** (a) n = 4we know  $P(x = r) = {}^{n}C_{r} (p)^{r} (q)^{n-r}$ here  $p(x = 2) = 3 \times P(x = 3)$   ${}^{4}c_{2} . (p)^{2} (q)^{4-2} = 3 \times {}^{4}c_{3} (p)^{3} (q)^{1}$  $\frac{4!}{(4-2)1\times 2!} (p)^2 (1-p)^2 = 3 \times \frac{4!}{(4-3)1\times 3!} \times (p)^3 (1-p)$ Since  ${}^{n}c_{r} = \frac{n!}{(n-r)!1 \times r!}$  $6 \times (1-p) = 3 \times 4p$ 6 - 6p = 12p18p = 6 $p = \frac{1}{-1}$ What is the SD and mean of x Nov-2019 **96.**  $\inf f(x) = \frac{\sqrt{2}}{\sqrt{\pi}} e^{-2(x-3)^2}, -\infty < x < \infty.$ (b)  $3, \frac{1}{4}$ (c)  $2, \frac{1}{2}$ (d) 2,  $\sqrt{2}$ (a)  $3, \frac{1}{2}$ Answer: (a) The standard form of probability density function is

**103.** If the parameter of Poisson distribution is m and (Mean + S. D.) = 6/25 the find m: Nov - 2020

Probability (Theoretical) Distribution38.17GOPAL BHOOT(a) 3/25(b) 1/25(c) 4/25(d) 3/5Auswer:(b) In Poisson distributionMean = m  
S.D. = 
$$\frac{1}{5}$$
.  
m +  $\sqrt{m} = \frac{6}{25}$ m +  $\sqrt{m} = \frac{6}{25}$ (l) By Hits and Trial  
option (b) satisfied the eq. (1)Here, m =  $\frac{1}{25}$  substitution (b) is correct.104. A coin with probability for head as 1/5 is tossed 100 times. The standard deviation of the  
number of head turned up is.104. A coin with probability for head as 1/5 is tossed 100 times. The standard deviation of the  
number of head turned up is.(a) 3(b) 2(c) 4(d) 6Answer:  
(e) Here n = 100  
Probability of success (p)  $= \frac{1}{5}$   
 $= \frac{4}{5}$ S.D. =  $\sqrt{npq}$  $= 1 - \frac{1}{5}$   
 $= \frac{4}{5}$ S.D. =  $\sqrt{npq}$  $= 1 - \frac{1}{5}$   
 $= \frac{4}{5}$ S.D. =  $\sqrt{npq}$  $= 1 - \frac{1}{5}$   
 $= \frac{4}{5}$ S.D. =  $\sqrt{npq}$  $= 1 - \frac{1}{5}$   
 $= \frac{4}{5}$ S.D. =  $\sqrt{npq}$   
 $= \sqrt{1000 \times \frac{1}{5} \times \frac{4}{5}}$   
 $= \sqrt{4 \times 4}$   
 $= 4$ 105. If x is a Disson variable and P (X = 1) = P (x = 2), then P (x = 4) is  
 $\frac{1}{2}e^{-4}$ (a) f (X > (n))  
 $m af P(x = 1) = \frac{e^{-4}x^2}{2}$   
 $= \frac{e^{-4}x^4}{2}$   
 $2 m = m^2$  $\left[ 2 = m \right]$   
 $m = 2$   
 $P(x = x) = \frac{e^{-mmx}}{n!}$   
 $= \frac{e^{-4}x^4}{n!}$   
 $= \frac{e^{-4}x^4}{2!}$ (a) Foison  
 $(b) Normal $(c) Binomial$ (b) Aboveric  
 $(a) 0$ (b) Normal  
 $(c) 2$ (c) Aboveric  
 $(d) - 0$ (d) Poisson  
 $(d) = 0$ (e) To a normal distribution, the value of third moment about mean is.Jan - 2021  
 $(a) 0$$ 

#### **Probability (Theoretical) Distribution**

#### **GOPAL BHOOT**



38.18

- cost? July 2021 (a) Pie chart
- (b) Bar graph (c) Multiple Line chart (d) Scatter plot 111. If x is a binomial variate with P = 1/3, for the experiment of 90 trials, then the standard deviation is equal to: July - 2021

(d)  $\sqrt{15}$ 

- (a)  $-\sqrt{5}$ (b)  $\sqrt{5}$ (c)  $2\sqrt{5}$ **Answer:** (c) P if  $x \sim B(n,p)$ Here n = 90, p = 1/3, q = 1 - pS.D.  $= \sqrt{npq}$  $= \sqrt{90 \times \frac{1}{3} \times \frac{2}{3}}$  $=\sqrt{20}$ S.D. =  $2\sqrt{5}$
- **112.** For a certain type of mobile, the length of time between charges of the battery is normally distributed with a mean of 50 hours and a standard deviation of 15 hours. A person owns one of these mobiles and want to know the probability that the length of time will be between 50 and 70 hours is (given  $\phi(1.33)$ ) = 0.9082,  $\phi(0) = 0.5$ )? **July – 2021** (a) - 0.4082(b) 0.5 (c) 0.4082(d) - 0.5Answer:

(c) Here mean  $(\mu) = 50$  hours

S.D (
$$\sigma$$
) = 15 hours  
P(50 < x < 70) = P $\left(\frac{50-50}{15} < \frac{x-\mu}{\sigma} < \frac{70-50}{15}\right)$   
= P(0< $\neq$ < 1.33)  
=  $\varphi(1.33) - \varphi(0)$   
= 0.9082-0.5000  
= 0.4082

**113.** The average number of advertisements per page appearing in a newspaper is 3. What is the probability that in a particular page zero number of advertisements are there? **Dec 2021** 

| Probabi | lity (Theoreti                                           | cal) Distribution                         | 38.19                               | G                        | OPAL BHOOT      |  |  |  |  |  |  |  |
|---------|----------------------------------------------------------|-------------------------------------------|-------------------------------------|--------------------------|-----------------|--|--|--|--|--|--|--|
|         | (a) $e^{-3}$                                             | (b) e <sup>0</sup>                        | (c) $e^{+3}$                        | (d) e <sup>-1</sup>      |                 |  |  |  |  |  |  |  |
|         | Answer:                                                  |                                           |                                     |                          |                 |  |  |  |  |  |  |  |
|         | (a) Give                                                 | m m = 3; x=0                              |                                     |                          |                 |  |  |  |  |  |  |  |
|         | As per Poisson Distribution $P(x) = \frac{e^{-m}m^x}{m}$ |                                           |                                     |                          |                 |  |  |  |  |  |  |  |
|         | $a^{-3}2^0$ - X!                                         |                                           |                                     |                          |                 |  |  |  |  |  |  |  |
|         | P(X)                                                     | $= 0) = \frac{e^{-3}}{0!} = e^{-3}$       |                                     |                          |                 |  |  |  |  |  |  |  |
| 114.    | Four unbiase                                             | d coins are tossed simultar               | neously. The expect                 | ed number of head is :   | <b>Dec 2021</b> |  |  |  |  |  |  |  |
|         | (a) 1                                                    | (b) 2                                     | (c) 3                               | (d) 4                    |                 |  |  |  |  |  |  |  |
|         | Answer:                                                  |                                           |                                     |                          |                 |  |  |  |  |  |  |  |
|         | (b) Sinc                                                 | e four coins are being toss               | ed, we have $n = 4$ .               |                          |                 |  |  |  |  |  |  |  |
|         | Prob                                                     | bability of getting a "heads              | " in each trial $(p) = \frac{1}{2}$ | 1/2                      |                 |  |  |  |  |  |  |  |
|         | Expe                                                     | ected numbers of heads $= 1$              | $np = 4 \times \frac{1}{2} = 2.$    |                          |                 |  |  |  |  |  |  |  |
| 115.    | If, for a Poiss                                          | son distributed random van                | riable X, the probab                | ility for X taking value | 2 is 3 times    |  |  |  |  |  |  |  |
|         | the probabilit                                           | ty for X taking value 4, the              | en the variance of X                | is                       | <b>Dec 2021</b> |  |  |  |  |  |  |  |
|         | (a) 4                                                    | (b) 3                                     | (c) 2                               | (d) 5                    |                 |  |  |  |  |  |  |  |
|         | Answer:                                                  |                                           |                                     |                          |                 |  |  |  |  |  |  |  |
|         | (c) In Poisson                                           | n Distribution, $P(x) = \frac{e^{-m}}{m}$ | m <sup>x</sup>                      |                          |                 |  |  |  |  |  |  |  |
|         | ~ /                                                      | x                                         | !                                   |                          |                 |  |  |  |  |  |  |  |
|         |                                                          | PC                                        | x = 2) = 3P(x = 4                   | 1)                       |                 |  |  |  |  |  |  |  |

$$P(x = 2) = 3P(x = 4)$$

$$\frac{e^m m^2}{2!} = 3 \times \frac{e^{-m} m^4}{4!}$$

$$\frac{1}{2} = \frac{3m^2}{24}$$

$$\frac{6m^2}{24} = 1$$

$$m^2 = \frac{24}{6} = 4$$

$$m = \sqrt{4} = 2$$

- **116.** Let X be normal distribution with mean 2.5 and variance 1. If P [a < X < 2.5] = 0.4772 and that the cumulative normal probability value at 2 is 0.9772, then a = ? (a) 0.5 (b) 3 (c) -3.5 (d) -4.5 Dec 2021
- **117.** The manufacturer of a certain electronic component is certain that 2 % in any box will be defective. Find the probability that a box, selected at random from 120 boxes would fail to meet the guarantee ? (Given that  $e^{-2.4} = 0.0907$ )
  - (a) 0.49 (b) 0.39 (c) 0.37 (d) 0.43Answer:
    - (d) Here, n = 120 ; p= $\frac{2}{100}$  = 0.02 m = np = 120 × 0.02 = 2.40

As per Poisson Distribution,  $P(x) = \frac{e^{-m}m^x}{x!}$ 

A box, selected at random would fail to meet the guarantee if more than 2.40 components turn out to

be defective.

$$P(x > 2.40) = 1 - P(x \le 2.40)$$

$$P(x > 2.40) = 1 - [P(x = 0) + P(x = 1) + P(x = 2)]$$

$$P(x > 2.40) = 1 - \left[\frac{e^{-240} \cdot (2.40)^0}{0!} + \frac{e^{-240} \cdot (2.40)^1}{1!} + \frac{e^{-240} \cdot (2.40)^2}{2!}\right]$$

$$P(x > 2.40) = 1 - \left[\frac{0.0907 \times 1}{1} + \frac{0.0907 \times 2.40}{1} + \frac{0.0907 \times (2.40)^2}{2}\right]$$

$$P(x > 2.40) \approx 0.43$$

**118.** A renowned hospital usually admits 200 patients everyday. One percent patients on an average, require special room facilities. On one particular morning. It was found that only one

#### **Probability (Theoretical) Distribution**

38.20

special room is available. What is the Probability that more than3 patients would requirespecial room facilitiesDec 2021(a) 0.1428(b) 0.7132(c) 0.2235(d) 0.3450

Answer:

(a) Here  $n = 200; p = \frac{1}{100}$ Therefore,  $m = np = 200 \times \frac{1}{100}$ As per Poisson Distribution,  $P(x) = \frac{e^{-m}m^x}{x!}$   $P(x > 3) = 1 - P(x \le 3)$  P(x > 3) = 1 - [P(x = 0) + P(x = 1) + P(x = 2) + P(x = 3)]  $P(x > 3) = 1 - [\frac{e^{-2} \times 2^0}{0!} + \frac{e^{-2} \times 2^1}{1!} + \frac{e^{-2} \times 2^2}{2!} + \frac{e^{-2} \times 2^3}{3!}]$   $P(x > 3) = 1 - [\frac{(271828)^{-2} \times 2^0}{0!} + \frac{(271828)^{-2} \times 2^1}{1!} + \frac{(271828)^{-2} \times 2^2}{2!} + \frac{(271828)^{-2} \times 2^3}{3!}]$   $P(x > 3) = 1 - [\frac{1}{(2.71828)^2} + \frac{2}{(2.71828)^2} + \frac{4}{2 \times (2.71828)^2} + \frac{8}{6 \times (2.71828)^2}]$   $P(x > 3) = 1 - [\frac{1}{(2.71828)^2} \{1 + 2 + \frac{4}{2} + \frac{8}{6}\}]$ P(x > 3) = 1 - [0.8571] = 0.1428

**119.** If standard Deviation is 1.732 then what is the value of Poisson distribution. The P [-2.48 < x < 3.54] is **June 2022** 

(a) 0.73(c) 0.86 (d) 0.81 (b) 0.65 Answer: **(b)** Given S.D. = 1.723S.D. =  $\sqrt{3}$ In Poisson distribution S.D. =  $\sqrt{m}$  $\sqrt{3} = \sqrt{m}$ m = 3 P(-2.48 < n < 3.54)= P(x = 0) + P(x = 1) + P(x = 2) + P(x = 3)=  $\frac{e^{-3} \times 3^{0}}{0!} + \frac{e^{-3} \times 3^{1}}{1!} + \frac{e^{-3} \times 3^{2}}{2!} + \frac{e^{-3} \times 3^{3}}{3!}$  $= e^{-3} \left[ \frac{1}{0!} + \frac{3}{1!} + \frac{9}{2!} + \frac{27}{3!} \right]$  $=e^{-3}\left[1+3+\frac{9}{2}+\frac{27^9}{2}\right]$  $= \frac{1}{e^3} \begin{bmatrix} 1 + 3 + 4.5 + 4.5 \end{bmatrix}$  $= \frac{1}{(2.72)^3} \times 13$  $= \frac{13}{(2.72)^3} = \frac{13}{20.12} = 0.6461 = 0.65$ 120. In a normal distribution, variance is 16 then the value of mean deviation is. June 2022 (a) 4.2 (b) 3.2 (c) 4.5(d) 2.5 Answer: (**b**) Variance = 16 (In Normal Distribution)  $S.D = \sqrt{16} = 4$ M.D = 0.8 S.D $= 0.8 \times 4$ 

$$= 0.0$$
  
 $= 3.2$ 

121. For a binomial distribution, there may be - June 2022

(a) One mode
(b) Two mode
(c) Multi mode
(d) No mode

122. Skewness of Normal Distribution is: Dec 2022

(a) Negative
(b) Positive
(c) Zero
(d) Undefined

123. If a Poisson distribution is such that P(X = 2) = P(X = 3) then the variance of the distribution

| Probabi | lity (Theoretica          | al) Distribution                                          | 38.21                                      | GOPA                                  | AL BHOOT |
|---------|---------------------------|-----------------------------------------------------------|--------------------------------------------|---------------------------------------|----------|
|         | is:                       | Dec 2022                                                  |                                            |                                       |          |
|         | (a) $\sqrt{3}$            | (b) 3                                                     | (c) 6                                      | (d) 9                                 |          |
|         | Answer:                   |                                                           |                                            |                                       |          |
|         | ( <b>b</b> ) In Pois      | sson distribution                                         |                                            |                                       |          |
|         | I                         | P(x=2) = P(x=3)                                           |                                            |                                       |          |
|         | $e^{-n}$                  | $\frac{m^2}{m^2} = \frac{e^{-m}m^3}{m^3}$                 |                                            |                                       |          |
|         | 2                         | $\frac{12}{2} \frac{3!}{m^3}$                             |                                            |                                       |          |
|         | $\Rightarrow \frac{n}{2}$ | $-=\frac{m}{6}$                                           |                                            |                                       |          |
|         | ⇒ 2r                      | n = 6                                                     |                                            |                                       |          |
|         | ⇔ m                       | n = 3                                                     |                                            |                                       |          |
|         | So V                      | ariance = $m = 3$                                         |                                            |                                       |          |
| 124.    | The Standard I            | Deviation of Binomial di                                  | istribution is:                            | Dec 2022                              |          |
|         | (a) npg                   | (b) $\sqrt{npq}$                                          | (c) np                                     | (d) $\sqrt{np}$                       |          |
| 125.    | The speeds of a           | a number of bikes follow                                  | w a normal distribu                        | tion model with a mean of 8.          | 3 km/hr  |
|         | and a standard            | deviation of 9.4 km./h                                    | r. Find the probabi                        | ility that a bike picked at rar       | ndom is  |
|         | travelling at mo          | ore than 95 km/hr.? Give                                  | en [P ( $\Xi > 1.28$ ) = 0                 | 0.1003] <b>Dec 2022</b>               |          |
|         | (a) 0.1003                | (b) 0.38                                                  | (c) 0.49                                   | (d) 0.278                             |          |
|         | Answer:                   |                                                           |                                            |                                       |          |
|         | (a) Mean                  | (M) = 83 , S.D.                                           | $\sigma = 9.4$                             |                                       |          |
|         | P(x >                     | $>95) = P\left(\frac{x-M}{\sigma}>\right)$                | $\frac{95-83}{94}$                         |                                       |          |
|         |                           | = P(Z > 1.2)                                              | 28)                                        |                                       |          |
|         |                           | = 0.1003                                                  |                                            |                                       |          |
| 126.    | The incidence             | of skin diseases in a che                                 | emical plant occurs                        | s in such a way that its worke        | ers have |
|         | 20% chance of             | suffering from it. What                                   | t is the probability                       | that 6 workers 4 or more w            | ill have |
|         | skin diseases?            | June 2023                                                 |                                            |                                       |          |
|         | (a) 0.1696                | (b) 0.01696                                               | (c) 0.164.                                 | 3 (d) 0.01643                         |          |
|         | (b) Probabili             | ity of suffering of skin d                                | $(\mathbf{P}) = 20\%$                      |                                       |          |
|         | (b) 1100001               | ity of suffering of skill d                               | P = 0.2                                    |                                       |          |
|         |                           |                                                           | q = 1 - 0.2                                |                                       |          |
|         |                           |                                                           | q = 0.8                                    |                                       |          |
|         | Here $n =$                | 6                                                         | -                                          |                                       |          |
|         | P(X=x) =                  | $n_{cx}$ . $p^x$ . $q^{n-x}$                              |                                            |                                       |          |
|         | P(X 4) =                  | P(X=4) + P(X=5) + P(X=5)                                  | X=6)                                       | -                                     |          |
|         | =                         | ${}^{6}C_{4} \times (O.2)^{4} (O.8)^{6-4} + C_{10}^{6-6}$ | ${}^{6}C_{5} \times (0.2)^{3} (0.8)^{6-2}$ | $^{9} + {}^{6}C_{6} \times (0.2)^{6}$ |          |
|         | P(X   4) =                | $15 \times 0.0016 \times 0.64 + 6$                        | $\times 0.0032 \times 0.8 + 1$             | ×                                     |          |
|         | ) í                       | $0.000064 \times 1$                                       |                                            |                                       |          |
|         | = (                       | 0.01536 + 0.001536 + 0                                    | .000064                                    |                                       |          |
|         | = (                       | 0.01696                                                   |                                            |                                       |          |
| 127.    | Between 9 and             | 10am the average num                                      | ber of phone calls                         | per minutes coming into the           | switch   |
|         | board of a com            | pany 1s 4. Find the prob                                  | bability that during                       | one particular minute. There          | will be  |
|         | either two phot           | the calls or no phone call                                | s. June 2023                               | $(\mathbf{J}) \cap 10\mathbf{J}$      |          |
|         | (a) 0.130                 | (0) 0.105                                                 | (c) 0.149                                  | (a) 0.194                             |          |
|         | AIISWEL.                  |                                                           |                                            |                                       |          |

(b) Given Average phone calls (m) = 4P(Either two calls or no phone calls)

$$= P(x = 2) + P(x = 0)$$
  
=  $\frac{e^{-m} \cdot m^2}{2!} + \frac{e^{-m} \cdot m^0}{0!}$   
=  $\frac{e^{-4} \cdot 4^2}{2!} + \frac{e^{-4} \cdot 4^0}{0!}$   
=  $e^{-4} \times 8 + e^{-4}$ 

 $= 9e^{-4}$  $=\frac{9}{e^4}=\frac{9}{(2.72)^2}=\frac{9}{54.74}=0.165$ **128.** If a Poisson distribution is such that  $P(X=2) = \frac{1}{3} P(x=3)$  June 2023 (b) 3 (a) 4 (c) 2(d) 1 Answer: **(b)** Given  $P(x = 2) P(x = 3) [x \sim P(m)]$  $\frac{e^{-\underline{m}} \cdot \underline{m}^2}{2!} = \frac{e^{-\underline{m}} \cdot \underline{m}^3}{3!}$ 2m = 6M = 3Mean of poisson distribution = m = 3**129.** In a Standard Normal distribution, then the value of the mean ( $\mu$ ) and standard deviation  $(\sigma)$  is: dec 2023 (a)  $\mu = 0$  and  $\sigma = 0$ (b)  $\mu = 0$  and  $\sigma = 1$ (d)  $\mu = 0$  and  $\sigma = 1$ (c)  $\mu = 1$  and  $\sigma = 0$ Answer: (b) In Standard Normal Distribution, Mean ( $\mu$ ) = 0 and SD ( $\sigma$ ) = 1 130. If mean and variance of a random variable which follows the Binomial Distribution are 7 and 6 respectively, then the probability of success is: dec 2023  $(b) \frac{36}{49}$  $(a)\frac{6}{7}$  $(c)^{\frac{1}{2}}$  $(d)\frac{1}{40}$ Answer: (c) In Binomial Distribution Mean = 7 and Variance = 6np = 7 - (1) npq = 6 - (2)eq (2)/ eq (1)  $\frac{npq}{np} = \frac{6}{7}$  $q = \frac{6}{7}$  $P = 1 - q = 1 - \frac{6}{7} = \frac{1}{7}$ Probability of success  $| P = \frac{1}{7}$ 131. If six coins are tossed simultaneously. The probability of obtaining exactly two heads are. dec 2023 (a) 0.2343 (b) 0.9841 (c) 0.1268 (d) 0.0156 Answer: **(a)** 

Here n = 6, p = 
$$\frac{1}{2}$$
, q =  $\frac{1}{2}$   
p(Exactly two heads obtained) = p(x = 2)  
= n<sub>cx</sub> · p<sup>x</sup> · q<sup>n-x</sup>  
= 6<sub>c2</sub> ·  $(\frac{1}{2})^2 · (\frac{1}{2})^{6-2}$   
=  $\frac{6 \times 5}{2 \times 1} \times (\frac{1}{2})^2 + 6^{-2}$   
=  $15 \times (\frac{1}{2})^6$   
=  $\frac{15}{64}$   
= 0.2343

132. If 'x' and 'y' are independent normal variate with mean and Standard deviation respectively, then for z = x + y which also follows normal distribution mean and SD are: dec

## **Probability (Theoretical) Distribution**

38.23

2023

(a) Mean =  $\mu_1 + \mu_2$ , SD =  $\sqrt{\sigma_1^2 + \sigma_2^2}$ (b) Mean =  $(\mu_1 + \mu_2)/2$ , SD =  $\sqrt{\sigma_1^2 + \sigma_2^2}/2$ (c) Mean =  $\mu_1 - \mu_2$ , SD =  $\sqrt{\sigma_1^2 - \sigma_2^2}$ (d) Mean =  $(\mu_1 - \mu_2)/2$ , SD =  $\sqrt{\sigma_1^2 - \sigma_2^2}/2$ Answer:

(a) If X and Y are two independent of normal variate. If X – N( $\mu_{1'}\sigma_{1}^{2}$ ) and  $Y - N(\mu 2, \sigma^2 2)$ then X + Y  $\mu$ -N( $\mu$ 1 +  $\mu_{2''} \sigma_1^2 + \sigma_2^2$ ) Mean of  $(x+y) = (\mu_1 + \mu_2)$ Variance of  $(x+y) = \sigma_1^2 + \sigma_2^2$ S.D of  $(x+y) = \sqrt{\sigma_1^2} + \sigma^2^2$ 

- 133. For a binomial distribution the mean and standard deviation are 10 and 3 respectively. Find the value of n. dec 2023
  - (a) 30 (b) 9 (c) 90 (d) 100

## Answer:

(d) For Binomial Distribution

and S.D = 3Mean  $(\mu) = np$  $\sqrt{npq} = 3$ 10 = np .....(1) on squaring npq = 9 .....(2) eq. (2) / eq. (1)  $\frac{npq}{np} = \frac{9}{10}$ or  $q = \frac{9}{10}$  $p = 1 - q = 1 - \frac{9}{10} = \frac{1}{10}$ putting the value of p in eq, (1)  $10 = n \times \frac{1}{10}$ n= 100

|      | Answer Key |      |   |      |   |      |   |      |   |      |   |      |   |      |   |      |   |      |   |
|------|------------|------|---|------|---|------|---|------|---|------|---|------|---|------|---|------|---|------|---|
| 1.   | с          | 2.   | b | 3.   | d | 4.   | b | 5.   | с | 6.   | d | 7.   | a | 8.   | с | 9.   | с | 10.  | a |
| 11.  | с          | 12.  | a | 13.  | с | 14.  | d | 15.  | a | 16.  | с | 17.  | b | 18.  | d | 19.  | b | 20.  | с |
| 21.  | a          | 22.  | a | 23.  | b | 24.  | d | 25.  | с | 26.  | a | 27.  | d | 28.  | d | 29.  | c | 30.  | с |
| 31.  | a          | 32.  | a | 33.  | a | 34.  | a | 35.  | d | 36.  | a | 37.  | a | 38.  | b | 39.  | c | 40.  | a |
| 41.  | c          | 42.  | a | 43.  | c | 44.  | d | 45.  | с | 46.  | b | 47.  | a | 48.  | b | 49.  | b | 50.  | d |
| 51.  | a          | 52.  | a | 53.  | c | 54.  | a | 55.  | c | 56.  | a | 57.  | c | 58.  | c | 59.  | c | 60.  | c |
| 61.  | c          | 62.  | a | 63.  | c | 64.  | c | 65.  | с | 66.  | c | 67.  | c | 68.  | c | 69.  | b | 70.  | с |
| 71.  | c          | 72.  | с | 73.  | a | 74.  | c | 75.  | a | 76.  | b | 77.  | a | 78.  | c | 79.  | a | 80.  | d |
| 81.  | b          | 82.  | с | 83.  | d | 84.  | с | 85.  | a | 86.  | с | 87.  | d | 88.  | b | 89.  | b | 90.  | a |
| 91.  | a          | 92.  | b | 93.  | b | 94.  | c | 95.  | a | 96.  | a | 97.  | a | 98.  | b | 99.  | a | 100. | b |
| 101. | -          | 102. | d | 103. | b | 104. | c | 105. | a | 106. | a | 107. | a | 108. | c | 109. | b | 110. | a |
| 111. | c          | 112. | с | 113. | a | 114. | b | 115. | a | 116. | a | 117. | d | 118. | a | 119. | b | 120. | b |
| 121. | c          | 122. | с | 123. | b | 124. | b | 125. | a |      |   |      |   |      |   |      |   |      |   |

## **Index Numbers**

## **GOPAL BHOOT**

# CHAPTER INDEX NUMBERS

## **PAST YEAR QUESTIONS**

| 1.  | The number of test of Ad                                                                 | equacy is :       |              |              |               |                       | Nov-2006                              |  |  |
|-----|------------------------------------------------------------------------------------------|-------------------|--------------|--------------|---------------|-----------------------|---------------------------------------|--|--|
|     | (a) 2 (l                                                                                 | o) 3              | (c)          | 4.           | (d)           | 5                     |                                       |  |  |
| 2.  | The consumer price index                                                                 | x for 2006 on     | the basis of | f 2005 from  | n the follow  | ing data is           | :Nov-2006                             |  |  |
|     | Commodities Qu                                                                           | antities Cons     | sumed in 2   | 005 Pi       | rice in 2005  | Price                 | s in 2006                             |  |  |
|     | А                                                                                        | 6                 |              |              | 5.75          | (                     | 6.00                                  |  |  |
|     | В                                                                                        | 6                 |              |              | 5.00          | :                     | 8.00                                  |  |  |
|     | С                                                                                        | 1                 |              |              | 6.00          |                       | 9.00                                  |  |  |
|     | D                                                                                        | 6                 |              |              | 8.00          | 1                     | 0.00                                  |  |  |
|     | Е                                                                                        | 4                 |              |              | 2.00          |                       | 1.50                                  |  |  |
|     | F                                                                                        | 1                 |              |              | 20.00         | 1                     | 5.00                                  |  |  |
|     | (a) 128.77 (l                                                                            | o) 108.77         | (c)          | 138.77       | (d)           | 118.77                |                                       |  |  |
| 3.  | Suppose a business exec                                                                  | utive was ea      | rning ₹ 2,0  | 050 in the   | base period   | l, what sh            | ould be his                           |  |  |
|     | salary in the current period                                                             | od if his stand   | dard of livi | ng is to rea | main the same | me? Given             | $\sum W = 25$                         |  |  |
|     | and $\sum IW = 3544$ :                                                                   |                   |              | U            |               |                       | Nov-2006                              |  |  |
|     | (a) ₹ 2096 (1                                                                            | o) ₹ 2906         | (c)          | ₹2106        | (d)           | ₹2306                 |                                       |  |  |
| 4.  | Fisher's ideal formula for                                                               | calculating in    | ndex numbe   | er satisfies | the           | :                     | Feb-2007                              |  |  |
|     | (a) Unit Test (1                                                                         | b) Factor Rev     | ersal Test ( | c) Both (a)  | & (b) (d)     | None of th            | hese                                  |  |  |
| 5.  | Circular Test is satisfied                                                               | ov:               |              |              |               |                       | <b>May-2007</b>                       |  |  |
|     | (a) Paasche's Index Numb                                                                 | ber.              |              |              |               |                       |                                       |  |  |
|     | (b) The simple geometric mean of price relatives and the weighted aggregative with fixed |                   |              |              |               |                       |                                       |  |  |
|     | weights                                                                                  |                   |              |              |               |                       |                                       |  |  |
|     | (c) Laspevres Index Num                                                                  | ber               |              |              |               |                       |                                       |  |  |
|     | (d) None of these                                                                        |                   |              |              |               |                       |                                       |  |  |
| 6.  | From the following data                                                                  |                   |              |              |               |                       | <b>May-2007</b>                       |  |  |
|     | Group :                                                                                  | Α                 | В            | С            | D             | Е                     | F                                     |  |  |
|     | Group Index :                                                                            | 120               | 132          | 98           | 115           | 108                   | 95                                    |  |  |
|     | Weight :                                                                                 | 6                 | 3            | 4            | 2             | 1                     | 4                                     |  |  |
|     | The general index is give                                                                | n by :            | -            | -            |               |                       | · · · · · · · · · · · · · · · · · · · |  |  |
|     | (a) 113.54 (l                                                                            | b) 115.30         | (c)          | 117.92       | (d)           | 111.30                |                                       |  |  |
| 7.  | Cost of living index num                                                                 | pers are also u   | used to find | real wages   | s by the pro  | cess of:              | Aug-2007                              |  |  |
|     | (a) Base shifting                                                                        |                   | (b)          | Splicing o   | f index num   | bers                  | 8                                     |  |  |
|     | (c) Deflating of index nu                                                                | nbers             | (d)          | None of th   | iese          |                       |                                       |  |  |
| 8.  | The prices of a commod                                                                   | ity in the yea    | r 1975 and   | 1980 wer     | e 25 and 30   | ) respectiv           | elv. Taking                           |  |  |
|     | 1980 as the base year the                                                                | price relative    | is:          |              |               | · · · ·               | Aug-2007                              |  |  |
|     | (a) 113.25 (l                                                                            | ) 83.33           | (c)          | 109.78       | (d)           | None                  | 8                                     |  |  |
| 9.  | P <sub>10</sub> is the index for time:                                                   | ,                 |              |              | (-)           |                       | Nov-2007                              |  |  |
|     | (a) 0 on 1                                                                               | (0, 1) $(0, 1)$   | (c)          | 1 on 1       | (b)           | 0 on 0                | 1101 2001                             |  |  |
|     |                                                                                          | <i>s)</i> 1 011 0 | OriginalPri  | ice index    | (0)           | 0 011 0               |                                       |  |  |
| 10. | Shifted Price index = $\frac{1}{Dr}$                                                     | index of t        | ba waaran    | which it he  | a to be shift | $\frac{1}{100}$ ×100: | Feb-2008                              |  |  |
|     | PI.                                                                                      |                   | he year on   |              |               |                       |                                       |  |  |
|     | (a) True (l                                                                              | b) False          | (c)          | Partly Tru   | e (d)         | Partly Fal            | se                                    |  |  |
| 11. | Laspeyare's and Paasche                                                                  | s Method          |              | Time Ro      | eversal Test  |                       | June-2008                             |  |  |
|     | (a) Do not satisfy (                                                                     | o) Satisfy        | (c)          | Depends o    | n the case    | (d) Can               | 't say.                               |  |  |
| 12. | Chain index is equal to :                                                                |                   |              |              |               |                       | <b>June-2008</b>                      |  |  |

| Index Nun                    | nbers 39.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>GOPAL BHOOT</b>                                                  |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Index Num                    | hbers39.3Only Fisher's Ideal satisfies Factor Reversal Test .Unit Test –This test requires that the formula should be independent of the<br>unit in which or for prices and qualities are quoted .Except for the simple (unweighted) aggregative index all other<br>formulae satisfy this test . (This means that Fisher's Index also<br>satisfies this test).Circular Test –It is concerned with the measurement of price changes over a<br>period of years, when it is desirableto shift the base.This test is not met by Laspeyres or Paasche's or the Fisher's<br>Ideal Index.The simple geometric mean of price relatives and the weighted<br>aggregative with fixed weights meet this test .Therefore, we can conclude that Fisher's Ideal Index satisfies all<br>other tests except the Circular Test . $P_{01}Q_{01} = \frac{\Sigma P_1 Q_1}{EP_0 Q_0}$ which of following test satisfies the above?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GOPAL BHOOT                                                         |
| (4<br>(0<br><b>A</b>         | a) Time Reversal Test<br>(b) Factor Reversal Test<br>(c) Circular Test<br>(c) Factor Reversal Test holds when the product of price index and the quantity index should be equal to the corresponding value index.<br>i.e. $\frac{\Sigma P_1 Q_1}{\Sigma P_0 Q_0}$<br>Symbolically : $P_{01} \times Q_{01} = V_{01}$<br>$P_{01} \sqrt{\frac{\Sigma P_1 Q_0}{\Sigma P_0 Q_0}} \times \frac{\Sigma P_1 Q_1}{\Sigma P_0 Q_1} Q_{01} \sqrt{\frac{\Sigma Q_1 P_0}{\Sigma Q_0 P_0}} \times \frac{\Sigma P_1 Q_1}{\Sigma Q_0 P_0}}{\frac{\Sigma Q_0 P_0}{\Sigma Q_0 P_0}} = \sqrt{\frac{\Sigma P_1 Q_1}{\Sigma P_0 Q_0}} \times \frac{\Sigma P_1 Q_1}{\Sigma P_0 Q_0}}{\frac{\Sigma P_1 Q_1}{\Sigma P_0 Q_0}} \times \frac{\Sigma P_1 Q_1}{\Sigma P_0 Q_0}}{\frac{\Sigma P_1 Q_1}{\Sigma P_0 Q_0}} \times \frac{\Sigma P_1 Q_1}{\Sigma P_0 Q_0}}{\frac{\Sigma P_1 Q_1}{\Sigma P_0 Q_0}} \times \frac{\Sigma P_1 Q_1}{\Sigma P_0 Q_0}}{\frac{\Sigma P_1 Q_1}{\Sigma P_0 Q_0}} \times \frac{\Sigma P_1 Q_1}{\Sigma P_0 Q_0}}{\frac{\Sigma P_1 Q_1}{\Sigma P_0 Q_0}} \times \frac{\Sigma P_1 Q_1}{\Sigma P_0 Q_0}}{\frac{\Sigma P_1 Q_1}{\Sigma P_0 Q_0}} \times \frac{\Sigma P_1 Q_1}{\Sigma P_0 Q_0}}{\frac{\Sigma P_1 Q_1}{\Sigma P_0 Q_0}} \times \frac{\Sigma P_1 Q_1}{\Sigma P_0 Q_0}}{\frac{\Sigma P_1 Q_1}{\Sigma P_0 Q_0}} \times \frac{\Sigma P_1 Q_1}{\Sigma P_0 Q_0}}{\frac{\Sigma P_1 Q_1}{\Sigma P_0 Q_0}} \times \frac{\Sigma P_1 Q_1}{\Sigma P_0 Q_0}}{\frac{\Sigma P_1 Q_1}{\Sigma P_0 Q_0}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                     |
| 21. T                        | ime reversal & factor reversal are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Dec-2009                                                            |
| (2<br>22. Ir<br>(2           | (d) Test (<br>a Laspeyeres Index Number are used as weights?<br>b) Base year price (b) Current year price                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DEC-2009                                                            |
| 23. Ir<br>=<br>(¿            | b) Base year quantities<br>(d) Current year quantities<br>(d) Current year quantities<br>(e) Current year quantities<br>(f) Current year qu | s index number<br>June-2010<br>of these                             |
|                              | $150 = \frac{180 + \text{Paasche's}}{2}$ $180 + \text{Paasches} = 300$ $\therefore \text{ Paasche's Index No.} = 120$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                     |
| 24. C                        | onsumer price index is commonly known as<br>a) Chain Based index (b) Ideal index                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>June-2010</b>                                                    |
| (c<br>25. If<br>n<br>(a<br>A | c) Wholesale price index (d) Cost<br>Laspeyres index number is 90 and Paasche's index number is 160, then<br>umber will<br>a) 144 (b) 120 (c) 125 (d) None<br><b>nswer :</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | of living index.<br>n Fisher's index<br><b>Dec-2010</b><br>of these |

| Index N | umbers                                       | 39                                                                        | .4                                                      |                 | GOPAL BHOOT   |
|---------|----------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------|-----------------|---------------|
|         | ( <b>b</b> ) Fisher's index                  | $N_0 = \sqrt{L_{aspevre} \times P_a}$                                     | asche                                                   |                 |               |
|         | Eighen's index                               | $\sqrt{100 \times 160} = 120$                                             | nuserie<br>N                                            |                 |               |
| 26      | Wholesale Price Index                        | $100 - 790 \times 100 - 120$<br>x (WP) is given by :                      | )                                                       |                 | Juno-2011     |
| 20.     | (a) Marshall-Edgewon                         | rth Index                                                                 | (b) Laspevres Index                                     |                 | June-2011     |
|         | (a) Marshan-Lugewon                          |                                                                           | (d) None of the abov                                    | e               |               |
| 27      | Fisher's Ideal index is                      | s obtained by .                                                           |                                                         | с.              | June-2011     |
| 21.     | (a) Arithmetic Mean                          | of Laspevres & Paasche                                                    | 's index                                                |                 | June-2011     |
|         | (b) Geometric Mean (                         | of Laspeyres & Paasche                                                    | 's index                                                |                 |               |
|         | (c) Sum of Laspevres                         | & Paasche's index                                                         | 5 maex                                                  |                 |               |
|         | (d) None of the above                        |                                                                           |                                                         |                 |               |
|         | Answer :                                     |                                                                           |                                                         |                 |               |
|         | (b) Fishers Ideal I                          | ndex is obtained by geo                                                   | metric mean of Laspe                                    | yre's & Paasc   | he's Price    |
|         | Index.                                       |                                                                           | 1                                                       | ,<br>           |               |
|         | Fisher Ideal In                              | dex = $\sqrt{\text{LaspeyrePrice}}$                                       | Index × PaaschePrice                                    | Index           |               |
| 28.     | The index number of                          | prices at a place in the                                                  | year 2008 is 225 with                                   | 2004 as the b   | ase year then |
|         | June-2011                                    |                                                                           | •                                                       |                 | 2             |
|         | (a) average 125% incl                        | rease in prices.                                                          | (b) average 225% inc                                    | crease in price | 28.           |
|         | (c) average 100% inc                         | rease in prices.                                                          | (d) None of the abov                                    | e.              |               |
|         | Answer :                                     |                                                                           |                                                         |                 |               |
|         | (a) Say, the price                           | of base year $2004 = 10$                                                  | 0                                                       |                 |               |
|         | $\therefore$ the price of c                  | = 225                                                                     |                                                         |                 |               |
|         | Increase in Price                            | s = 225 - 100                                                             |                                                         |                 |               |
|         |                                              | =125<br>. Increaseinpric                                                  | e                                                       |                 |               |
|         | $\therefore$ % of incease i                  | n price = $\frac{1}{PriceofBaseyea}$                                      | $\frac{1}{100} \times 100 = \frac{1}{100} \times 100 =$ | 125%            |               |
| 29.     | If the price of all com                      | modities in a place has                                                   | increased 20% in Con                                    | aparison to th  | e base period |
|         | prices, then the index                       | number of prices for th                                                   | e place is now                                          | _•              | Dec-2011      |
|         | a) 100                                       | b) 120                                                                    | c) 20                                                   | d) 150          |               |
|         | Answer:                                      | $\mathbf{v}_{\mathbf{m}}(\mathbf{D}) = \mathbf{D}_{\mathbf{n}} \cdot 100$ |                                                         |                 |               |
|         | Price of Curre                               | yis $(P_0) = Rs. 100$                                                     | 20% Rs 100                                              |                 |               |
|         | = Rs 100                                     | + Rs 20 = Rs 120                                                          | 20 /0 /13. 100                                          |                 |               |
|         | Index No. $-\frac{F}{F}$                     | $\frac{1}{2} \times 100 - \frac{120}{2} \times 100 - 120$                 | 20                                                      |                 |               |
|         | $\frac{1}{F}$                                | $\frac{1}{100} \times 100 = \frac{1}{100} \times 100 = 12$                |                                                         |                 |               |
| 30.     | If $\Sigma P_0 Q_0 = 116$ , $\Sigma P_0 Q_0$ | $Q_1 = 140 \Sigma P_1 Q_0 = 97,$                                          | $\Sigma P_1 Q_1 = 117$ then Fig                         | sher's ideal in | ndex number   |
|         | 18 (a) 184                                   | (b) 82 50                                                                 | (a) 110.66                                              | (4) 120         | June-2012     |
|         | (a) 104<br>Answer •                          | (0) $03.39$                                                               | (c) 119.00                                              | (u) 120         |               |
|         | ( <b>b</b> ) Given : $\Sigma P_0 O_0$        | = 116                                                                     |                                                         |                 |               |
|         | $\Sigma P_0 O_1 = 140$                       | 110                                                                       |                                                         |                 |               |
|         | $\sum_{n=0}^{\infty} P_0 Q_0 = 97$           |                                                                           |                                                         |                 |               |
|         | $\sum_{n=1}^{\infty} P_1 Q_1 = 117$          |                                                                           |                                                         |                 |               |
|         | Fisher's inde                                | ex formula                                                                |                                                         |                 |               |
|         | $\sum P_1 Q_0 \cdot \sum P_1 Q_2$            | $\frac{1}{2} \times 100$                                                  |                                                         |                 |               |
|         | $-\sqrt{\sum P_0 Q_0 \cdot \sum P_0 Q_1}$    | 1 100                                                                     |                                                         |                 |               |
|         | $= \frac{97 \times 117}{117} \times 1$       | 00                                                                        |                                                         |                 |               |
|         | $\sqrt{116\times140}$                        |                                                                           |                                                         |                 |               |
| 21      | = 83.39                                      | locala price inder much                                                   | or is 286 with 1005 ~~                                  | has were the    | an how much   |
| 31.     | the prices have increa                       | sed in 2005 in comparis                                                   | son to 1995?                                            | base year, the  | Tune-2013     |
|         | a) 286%                                      | b) 386%                                                                   | c) 86%                                                  | d) 186%         | JUIIV-2VIJ    |
| 32.     | Circular test is satisfie                    | ed by which index num                                                     | ber?                                                    | -, 20070        | June-2014     |
|         | a) Laspeyres                                 | b) Paasche's                                                              | c) Fisher's                                             | d) None of      | the above     |
| 33.     | Factor reversal test is                      | expressed in terms of                                                     | <i>,</i>                                                |                 | June-2015     |

| Index N | umbers                                                     | 3                                                                     | 9.5                                                                     | GOPAL BHOOT                                                                                                                          |
|---------|------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
|         | $\Sigma P_1 Q_1$                                           | $\Sigma P_1 Q_1 \dots \Sigma P_1 Q_1$                                 | $\Sigma P_1 Q_1$                                                        | $\Sigma Q_1 P_0 \dots \Sigma P_1 Q_1$                                                                                                |
|         | a) $\frac{1}{\Sigma P_0 Q_0}$                              | $\overline{\Sigma P_0 O_0} \times \overline{\Sigma P_0 O_1}$          | $\sum Q_0 P_1$                                                          | (1) $\frac{\overline{\Sigma O_0 P_0}}{\overline{\Sigma O_0 P_0}} \times \frac{\overline{\Sigma O_0 P_1}}{\overline{\Sigma O_0 P_1}}$ |
| 34.     | $\frac{1}{2}$ play a very imr                              | $\sim 10^{\circ}$                                                     | $\sim^{0}$ findex numl                                                  | bers June-2015                                                                                                                       |
| 011     | a) Weights                                                 | b) Classes                                                            | c) Estimations                                                          | d) None                                                                                                                              |
| 35.     | If $\Sigma P_0 O_0 = 1360$ , $\Sigma P_0$                  | $Q_0 = 1900, \Sigma P_0 Q_m =$                                        | $1344.\Sigma P_{\rm m}O_{\rm m} = 1880.$                                | then the Laspevre's Index                                                                                                            |
|         | Number is                                                  | 20 1900, = 021                                                        | 1011) = 1000)                                                           | June-2016                                                                                                                            |
|         | a) 0.71                                                    | b) 1.39                                                               | c) 1.76                                                                 | d) None.                                                                                                                             |
|         | Answer :                                                   |                                                                       |                                                                         |                                                                                                                                      |
|         | ( <b>b</b> ) $\sum P_0 Q_0 = 1360$<br>$\sum P_0 Q_n = 134$ | 0, $\sum P_n Q_0 = 1900$<br>4, $\sum P_n Q_n = 1880$                  |                                                                         |                                                                                                                                      |
|         | Laspevre's In                                              | dex Number = $\frac{\sum P_n Q_0}{\sum}$                              |                                                                         |                                                                                                                                      |
|         | 1 2                                                        | $\sum_{i=1}^{N} P_0 Q_0$                                              |                                                                         |                                                                                                                                      |
|         |                                                            | $=\frac{1300}{1360}$                                                  |                                                                         |                                                                                                                                      |
|         |                                                            | =1.39                                                                 |                                                                         |                                                                                                                                      |
| 36.     | In the year 2010 the r                                     | nonthly salary of a cl                                                | erk was ₹ 24,000. The                                                   | e consumer price Index was                                                                                                           |
|         | 140 in the year 2010,                                      | which rises to 224 in                                                 | the year 2016. If he has                                                | s to be rightly compensated,                                                                                                         |
|         | what additional month                                      | nly salary to be paid to                                              | him?                                                                    | <b>June-2016</b>                                                                                                                     |
|         | a) ₹ 14,400                                                | b) ₹ 38,400                                                           | c) ₹ 7,200                                                              | d) None of these.                                                                                                                    |
|         | Answer :                                                   |                                                                       |                                                                         |                                                                                                                                      |
|         | (a) Years                                                  | <b>Consumer Price</b>                                                 | idex Salary                                                             |                                                                                                                                      |
|         | 2010                                                       | 140                                                                   | 24,000                                                                  |                                                                                                                                      |
|         | 2016                                                       | 224                                                                   | Х                                                                       |                                                                                                                                      |
|         |                                                            | $\frac{140}{224} = \frac{240}{2}$                                     | 000                                                                     |                                                                                                                                      |
|         |                                                            | $v = \frac{224}{24000 \times 2}$                                      | 224                                                                     |                                                                                                                                      |
|         |                                                            | $\Lambda - \frac{140}{140}$                                           |                                                                         |                                                                                                                                      |
|         |                                                            | X = 38,400                                                            | 24.000                                                                  |                                                                                                                                      |
|         |                                                            | D.A = 38,400                                                          | - 24,000                                                                |                                                                                                                                      |
| 27      | Index number one the                                       | = 14,400                                                              |                                                                         | Dec 2016                                                                                                                             |
| 37.     | (a) Economica                                              | (b) Statistics                                                        | (a) $(A)$ and $(D)$                                                     | (d) None of these                                                                                                                    |
| 20      | (a) Economics                                              | (D) Statistics                                                        | (C) (A) and (D)<br>index no (D) are known                               | (d) None of these.                                                                                                                   |
| 30.     | Fisher's index no (F) h                                    | iu (L) allu Faasciles                                                 | index no (r) are kno                                                    | uno-2017                                                                                                                             |
|         | $\frac{1}{2} = \frac{1}{2} D$                              | $\sqrt{E} = \mathbf{I} \mathbf{D}$                                    | $\rightarrow E - 1/L D$                                                 | $\frac{1}{2} = 1 D$                                                                                                                  |
|         | $\frac{d}{\Gamma} = \Gamma$                                | $\mathbf{U} \mathbf{V} \mathbf{I} \mathbf{V} = \mathbf{L} \mathbf{I}$ | $C) \Gamma = 1/L\Gamma$                                                 | $\mathbf{U} \mathbf{\Gamma} = \mathbf{L} \mathbf{\Gamma}$                                                                            |
|         | (d) The relation h                                         | etween Lasnevre Paa                                                   | sche & Fisher Index is                                                  | given                                                                                                                                |
|         | hv                                                         | etween Luspeyre, r uu                                                 | some & Pisher maex is                                                   | Siven                                                                                                                                |
|         | $F = \sqrt{L \times P}$                                    | Where I                                                               | -> Lasnevre Index                                                       |                                                                                                                                      |
|         |                                                            | vinere i                                                              |                                                                         |                                                                                                                                      |
|         | $F^2 = L \times P$                                         | F                                                                     | P-> Paasche Index                                                       |                                                                                                                                      |
|         |                                                            | F                                                                     | -> Fisher Index                                                         |                                                                                                                                      |
| 39.     | Circular test is an exte                                   | ension of                                                             | :                                                                       | Dec-2017                                                                                                                             |
|         | (a) Factor reversal test                                   | t                                                                     | (b) Time reversal te                                                    | st                                                                                                                                   |
|         | (c) Neither (a) nor (b)                                    |                                                                       | (d) Both (a) and (b)                                                    |                                                                                                                                      |
| 40.     | Price relative is equal                                    | to :                                                                  |                                                                         | Dec-2017                                                                                                                             |
|         | (a) $\frac{\text{Price in the given year}}{1}$             | × 100                                                                 | (b) Price in the base ye                                                | $\frac{ear}{1} \times 100$                                                                                                           |
|         | (a) Price in the base year                                 | $x_{00} = x_{100}$                                                    | <ul> <li>Price in the given y</li> <li>(d) Price in the base</li> </ul> | ear > 100                                                                                                                            |
|         | A newor •                                                  | year × 100                                                            | (u) Price in the base                                                   | zyear × 100                                                                                                                          |
|         |                                                            | Price of aiven(Current)                                               | vear 100                                                                |                                                                                                                                      |
|         | (a) Price Relative =                                       | Price in the base yea                                                 | $\frac{1}{nr}$ ×100                                                     |                                                                                                                                      |

41. For consumers price index, prices are collected from: **Dec-2017** (a) Retail shop prices (b) Wholesale shop prices (c) Fair prices shops (d) Government Depots. **42.** A series of numerical figures which show the relative position is called. May -2018 (a) Index number(b) Relative number(c) Absolute number(d) None43. Price relative is expressed in term of

Price relative is expressed in term of   
(a) 
$$P = \frac{P_o}{P_n}$$
 (b)  $P = \frac{P_o}{P_n}$  (c)  $P = \frac{P_n}{P_o} \times 100$  (d)  $P = \frac{P_o}{P_n} \times 100$ 

44. If Laspeyre's Index Number is 250 and Paasche's Index Number is 160, then Fisher's Index Number is Nov-2018

a) 40,000 b)  $\frac{25}{16}$  c) 200 d)  $\frac{16}{25}$ 

Answer:

(c) Given: Laspeyre Index No. (L) = 
$$250$$

Fisher Index No. (P) = 160  
Fisher Index No. (F) = 
$$\sqrt{L \times P}$$
  
=  $\sqrt{250 \times 160}$   
=  $\sqrt{40,000}$   
= 200

45. The cost of living index numbers in years 2015 and 2018 were 97.5 and 115 respectively. The salary of a worker in 2015 was ₹19500. How much additional salary was required for him in 2018 to maintain the some standard of living as in 2015? June-2019

(a) 3000
(b) 4000
(c) 3500
(d) 4500

Answer:

(c) When index was 97.5, the salary Rs. 19,500 Now, when the index is 115, the salary should be  $\frac{115 \times 19.500}{97 \cdot 5} = \text{Rs. } 23,000$ Therefore, additional salary required

$$=$$
 Rs. 23,000  $-$  Rs. 19,500  $=$  Rs. 3,500

**46.** Fisher's index number does not satisfy:

(a) Circular test (b) Time reversal test (c) Factor reversal test(d) Unit test **Answer**:

(a) Fisher's ideal formula for calculating index no satisfies unit test as unit test requires that the formula should be independent of the unit in which or for which prices and quantities are quoted and that is fulfilled by fisher's Ideal Index,

**Factor reversal test** holds when the Product of price index and Quantity index should be equal to corresponding value index i.e.

$$=\frac{\sum P_{1Q_1}}{\sum P_{0Q_0}}$$

$$P_{01} \times Q_{01} = \frac{\sum P_{1Q_1}}{\sum P_{0Q_0}}$$

Hence it is satisfied by Fisher's ideal index.

**Time reversal test** is a test to determine whether a given method will work both ways in time forward and backward. So Fisher's satisfies this test.

**Circular Test** it is concerned with the measurement of price change over a period of years. This is not met by Fisher's ideal index no.

**47.** The index number of prices at place in the year 2008 is 225 with 2004 as the base then there is: **Nov-2019** 

(a) 125% increase (b) 225% increase (c) 100% increase (d) 25% decrease **Answer**:

(a) Let the index number of the base year be 100. Now,

 Year
 Index Number

 2004
 100

 2008
 225

Nov-2019

|            | Therefore                                           | , increase = $225 -$                                     | 100 = 125           |                           |                             |  |  |  |  |  |
|------------|-----------------------------------------------------|----------------------------------------------------------|---------------------|---------------------------|-----------------------------|--|--|--|--|--|
|            | % increas                                           | $e = \frac{125}{100} \times 100 = 12$                    | 5%                  |                           |                             |  |  |  |  |  |
| <b>48.</b> | Fisher's ideal Index                                | Number does not s                                        | satisfy test        |                           | Nov – 2020                  |  |  |  |  |  |
|            | (a) Circular                                        | (b) Time rever                                           | sal (c) Factor      | Reversal (d) Unit         | -                           |  |  |  |  |  |
| <b>49.</b> | Index Numbers are e                                 | expressed as                                             |                     |                           | Nov – 2020                  |  |  |  |  |  |
|            | (a) Squares                                         | (b) Ratio                                                | (c) Percent         | tages (d) Con             | nbinations                  |  |  |  |  |  |
| 50.        | In Laspeyre's Index                                 | number is 110 an                                         | d Fisher's ideal ir | ndex number is 109        | . Then Paasche's            |  |  |  |  |  |
|            | index number is                                     | (1) 110                                                  | () 100              | (1) 100                   | Nov – 2020                  |  |  |  |  |  |
|            | (a) 118                                             | (b) 110                                                  | (c) 109             | (d) 108                   |                             |  |  |  |  |  |
|            | Answer:                                             | $\operatorname{Aar} \mathbf{N}_{0}$ $(\mathbf{I}) = 110$ |                     |                           |                             |  |  |  |  |  |
|            | (u) Laspeyer Ind                                    | (L) = 110<br>w No. (E) = 100                             | )                   |                           |                             |  |  |  |  |  |
|            | Paasche Index No. P = $?$                           |                                                          |                     |                           |                             |  |  |  |  |  |
|            | $F^2$                                               | $= L \times$                                             | Р                   |                           |                             |  |  |  |  |  |
|            | D                                                   | $F^2$                                                    | $(109)^2$           |                           |                             |  |  |  |  |  |
|            | P                                                   | $=$ $\frac{1}{L}$                                        | 110                 |                           |                             |  |  |  |  |  |
|            |                                                     | $=\frac{109\times}{11}$                                  | <u>109</u>          |                           |                             |  |  |  |  |  |
|            | Р                                                   | = 108.                                                   | 0                   |                           |                             |  |  |  |  |  |
| 51.        | The cost of living in                               | dex is always                                            |                     |                           | <b>Jan – 2021</b>           |  |  |  |  |  |
|            | (a) Price index num                                 | ber                                                      | (b) Quanti          | (b) Quantity index number |                             |  |  |  |  |  |
|            | (c) Weighted index number (d) Value index number    |                                                          |                     |                           |                             |  |  |  |  |  |
| 52.        | Fisher's index number does not satisfy   Jan – 2021 |                                                          |                     |                           |                             |  |  |  |  |  |
| 50         | (a) Unit test                                       | (b) Circular tes                                         | st (c) Time re      | eversal test (d) Fact     | or reversal test            |  |  |  |  |  |
| 53.        | When the prices or                                  | quantities consum                                        | ed of all commod    | ities are changing 1      | n the same ratio,           |  |  |  |  |  |
|            | (a) Equal                                           | ers due to Laspeyr                                       | e s and Paasche;s   | will be                   | Jan – 2021                  |  |  |  |  |  |
|            | (a) Equal                                           |                                                          |                     |                           |                             |  |  |  |  |  |
|            | (c) Reciprocal of Ma                                | arshall Edge worth                                       | Index Number        |                           |                             |  |  |  |  |  |
|            | (d) Reciprocal of Fis                               | sher Index Number                                        | ·                   |                           |                             |  |  |  |  |  |
| 54.        | The consumer price                                  | index goes up fro                                        | om 120 to 180 wh    | en salary goes up f       | from 240 to 540,            |  |  |  |  |  |
|            | what is the increase                                | in real terms?                                           |                     |                           | <b>July – 2021</b>          |  |  |  |  |  |
|            | (a) 80                                              | (b) 150                                                  | (c) 100             | (d) 240                   |                             |  |  |  |  |  |
| 55.        | The weighted aggre                                  | gative price index                                       | turnover for 200    | 1 with 2000 as the        | base year using             |  |  |  |  |  |
|            | fisher's Index Numb                                 | ber is:                                                  |                     |                           | July – 2021                 |  |  |  |  |  |
| = (        | (a) 12.26                                           | (b) 112.20                                               | (c) 112.32          | (d) 112.                  | 36                          |  |  |  |  |  |
| 50.        | The weighted aggree                                 | egative price index                                      | a numbers for 200   | Diwith 2000 as the        | base year using             |  |  |  |  |  |
|            | Paasche's index nun                                 | nder is:                                                 | (in ₹)              | Quant                     | $\frac{JUIY - 2021}{ition}$ |  |  |  |  |  |
|            | Commounty                                           | 2000                                                     | (III X)<br>2001     | 2000                      | 2001                        |  |  |  |  |  |
|            | А                                                   | 10                                                       | 12                  | 20                        | 2001                        |  |  |  |  |  |
|            | B                                                   | 8                                                        | 8                   | 16                        | 18                          |  |  |  |  |  |
|            | C                                                   | 5                                                        | 6                   | 10                        | 11                          |  |  |  |  |  |
|            | D                                                   | 4                                                        | 4                   | 7                         | 8                           |  |  |  |  |  |
|            | (a) 112.32                                          | (b) 112.38                                               | (c) 112.26          | (d) 112.                  | 20                          |  |  |  |  |  |
|            | Answer:                                             |                                                          | -                   |                           |                             |  |  |  |  |  |
|            | (d)                                                 |                                                          |                     |                           |                             |  |  |  |  |  |
|            |                                                     |                                                          |                     |                           |                             |  |  |  |  |  |

| Commodity | 2000  |            | 20         | )01        |          |          |
|-----------|-------|------------|------------|------------|----------|----------|
|           | Price | Qty.       | Price      | Qty        |          |          |
|           | Po    | <b>Q</b> 0 | <b>P</b> 1 | <b>Q</b> 1 | $P_0Q_1$ | $P_1Q_1$ |

**Index Numbers** 

39.8

### **GOPAL BHOOT**

| A | 10 | 20 | 12 | 22 | 220                   | 264                   |
|---|----|----|----|----|-----------------------|-----------------------|
| B | 8  | 16 | 8  | 18 | 144                   | 144                   |
| C | 5  | 10 | 6  | 11 | 55                    | 66                    |
| D | 4  | 7  | 4  | 8  | 32                    | 32                    |
|   |    |    |    |    | $\sum_{=451} P_0 Q_1$ | $\sum_{=506} P_1 Q_1$ |

Paasche Index No =  $\frac{\sum P_1 Q_1}{\sum P_0 Q_1} \times 100$ =  $\frac{506}{451} \times 100$ = 112.20 (Approx)

57. The weighted aggregative price index numbers for 2001 with 2000 as the base year using Marshall Edgeworth index number is: July - 2021

| Commodity  | Price      | (in ₹)     | Quantities |      |  |  |
|------------|------------|------------|------------|------|--|--|
|            | 2000       | 2001       | 2000       | 2001 |  |  |
| Α          | 10         | 12         | 20         | 22   |  |  |
| В          | 8          | 8          | 16         | 18   |  |  |
| С          | 5          | 6          | 10         | 11   |  |  |
| D          | 4          | 4          | 7          | 8    |  |  |
| (a) 112.26 | (b) 112.20 | (c) 112.32 | (d) 112.   | .38  |  |  |

Answer:

**(a)** 

| Commodity | 2000           | 2001       |                       |            |                               |                               |                        |                       |
|-----------|----------------|------------|-----------------------|------------|-------------------------------|-------------------------------|------------------------|-----------------------|
|           | Price          | Qty        | Price                 | Qty        | P <sub>0</sub> Q <sub>0</sub> | P <sub>0</sub> Q <sub>1</sub> | <b>P</b> 1 <b>Q</b> 0  | $P_1Q_1$              |
|           | P <sub>0</sub> | <b>Q</b> 0 | <b>P</b> <sub>1</sub> | <b>Q</b> 1 |                               |                               |                        |                       |
| А         | 10             | 20         | 12                    | 22         | 200                           | 220                           | 240                    | 264                   |
| В         | 8              | 16         | 8                     | 18         | 128                           | 144                           | 128                    | 144                   |
| С         | 5              | 10         | 6                     | 11         | 50                            | 55                            | 60                     | 66                    |
| D         | 4              | 7          | 4                     | 8          | 28                            | 32                            | 28                     | 32                    |
|           |                |            |                       |            | $\sum_{=406} P_0 Q_0$         | $\sum_{=451}^{P_0Q_1}$        | $\sum_{=456}^{P_1Q_0}$ | $\sum_{=506} P_1 Q_1$ |

M.E Index No. = 
$$\left(\frac{\sum P_1 Q_0 + \sum P_1 Q_1}{\sum P_0 Q_0 + \sum P_0 Q_1}\right) \times 100$$
  
=  $\left(\frac{456 + 506}{406 + 451}\right) \times 100$   
= 112.26

- If  $P_{10}$  and  $P_{01}$  are index for 1 on 0 and 0 on 1 respectively then formula  $P_{01} \times P_{10} = 1$  is used **58.** for **Dec 2021** 
  - (a) Unit test

(b) Time Reversal Test

(c) Factor Reversal Test

(d) Circular Test

## Answer:

**(b)**  $P_{01} \times P_{10} = 1$  is used for 'Time Reversal Test'.

- The weighted average of price relatives of commodities, when the weights are equal to the **59**. value of commodities in the current year, yields \_\_\_\_\_index number **Dec 2021** (a) Fisher's ideal (b) Laspeyres's
  - (c) Paasches'

**60.** 

(d) Marshall – Edgeworth

|                    |                     |          | 0            |          |  |  |
|--------------------|---------------------|----------|--------------|----------|--|--|
| From the following | ing data base year: |          |              | Dec 2021 |  |  |
| Com                | modity              | Base     | Current year |          |  |  |
|                    | Price               | Quantity | Price        | Quantity |  |  |
| Α                  | 4                   | 3        | 6            | 2        |  |  |
| В                  | 5                   | 4        | 6            | 4        |  |  |
| С                  | 7                   | 2        | 9            | 2        |  |  |

| dex N      | umbers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                           | 39.9                            |             |                   | GOPAL BHO            |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------|-------------|-------------------|----------------------|
|            | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                         | 3                               |             | 1                 | 5                    |
|            | Fisher's Ideal Index                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S                                         |                                 |             |                   |                      |
|            | (a) 117.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (b) 115.43                                | (c) 118                         | .35         | (d) 110           | 5.48                 |
|            | Answer:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           |                                 |             |                   |                      |
|            | (a) Fisher's Index                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X                                         |                                 |             |                   |                      |
|            | $= \sqrt{\frac{\sum P_n Q_0}{\sum P_0 Q_0}} \times \frac{\sum P_0}{\sum P_0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\frac{nQ_n}{Q_nQ_n} \times 100$          |                                 |             |                   |                      |
|            | $= \frac{(6 \times 3) + (6 \times 4) + (6 \times 4)}{(6 \times 4) + (6 \times 4) + ($ | $(9\times2)+(1\times3) \times (1\times3)$ | 6×2)+(6×4)                      |             |                   |                      |
|            | $\sqrt{(4\times3)+(5\times4)+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $(7\times2)+(2\times3)$ (4)               | $4 \times 2) + (5 \times 4)$    |             |                   |                      |
|            | $=\sqrt{\frac{63}{52}\times\frac{59}{52}}\times100$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 = 117.3                                 |                                 |             |                   |                      |
| 61.        | Index Numbers are n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ot helpful in                             |                                 |             |                   | <b>Dec 2021</b>      |
|            | (a) Framing economi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | cs policies                               | (b) Rev                         | vealing tre | end               |                      |
|            | (c) Forecasting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | (d) Ide                         | ntifying e  | rrors             |                      |
| <b>62.</b> | The three index num                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | bers, namely, L                           | Laspeyre, Paasche               | and fishe   | r do not satis    | fytest.              |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                         |                                 |             |                   | <b>Dec 2021</b>      |
|            | (a) Time reversal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (b) Factor r                              | eversal (c) Uni                 | t           | (d) Cir           | cular                |
| 63.        | 7, 26, 63, 124, 215, 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 342                                       | ?                               |             |                   | <b>June 2022</b>     |
|            | (a) 511                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (b) 672                                   | (c) 508                         |             | (d) 550           | 5                    |
| 64.        | LOTUS is coded a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | s 14682 and                               | STRANGE is co                   | ded as 2    | 2690753. Ho       | w will you code      |
|            | GESTURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           |                                 |             |                   | <b>June 2022</b>     |
|            | (a) 5236893                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (b) 5326793                               | 3 (c) 534                       | 6893        | (d) 532           | 26893                |
| 65.        | 4, 6, 9, 13, 5,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 30.375                                  |                                 |             |                   | <b>June 2022</b>     |
|            | (a) 40.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (b) 20.25                                 | (c) 40.                         | 75          | (d) 60.           | 25                   |
| 66.        | Code for Word EAF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RTH is 16235                              | and VENUS is 9                  | 1784 wha    | it is code for    | · SATURN? June       |
| 000        | 2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 111 15 10200                              |                                 |             | . 15 0000 101     |                      |
|            | (a) $423827$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (b) 463827                                | (c) 463                         | 877         | (d) 413           | 3827                 |
| 67         | Find out the next terr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0) + 0.0027                              | (0) +03                         | 077         | (u) +1.           | Iune 2022            |
| 07.        | 7 11 27 63 127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | II —                                      |                                 |             |                   | June 2022            |
|            | (a) 511                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (b) 227                                   | (c) <b>510</b>                  | 0           | (d) 254           | -                    |
| 68         | (a) J11<br>Find the next terms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0) 227                                   | (c) 510                         | 0           | (u) 23.           | June 2022            |
| 00.        | $\begin{array}{c} 1 \\ 1 \\ 2 \\ 7 \\ 15 \\ 21 \\ 9 \\ 107 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                         |                                 |             |                   | June 2022            |
|            | 5, 7, 15, 51, 7, 127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $(\mathbf{b}) \in \mathcal{C}$            | $(a) \in A$                     |             | $(\mathbf{d}) 65$ |                      |
| (0         | $\begin{array}{c} (a) \ 02 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (0) 05                                    | (C) 04                          |             | (u) 03            | I                    |
| 09.        | Find out the next terr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n –                                       |                                 |             |                   | <b>June</b> 2022     |
|            | 6, 13, 28, 59, <i>?</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           | () 112                          |             | (1) 11(           | <b>`</b>             |
| =0         | (a) 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (b) 114                                   | (c) 113                         |             | (d) 11.           | <u> </u>             |
| 70.        | Geometric mean met                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nod used in wr                            | iich index to find i            | tout        |                   | <b>June</b> 2022     |
|            | (a) Laspeyres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                           | (b) Paa                         | sches       |                   |                      |
|            | (c) Fishers index Nu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mber                                      | (d) Noi                         | ne          |                   | T 2022               |
| 71.        | Which test is known                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | for shift base in                         | ndex no.                        |             |                   | June 2022            |
|            | (a) Factor test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (b) Unit tes                              | t (c) Circ                      | cular test  | (d) Tir           | ne reveral test      |
| 72.        | Laspeyre and Paasch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e do not satisfy                          | /                               | _           |                   | June 2022            |
|            | (a) Unit Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (b) Factor to                             | est (c) Tim                     | e Revers    | al Test (d) B     | owley's Test         |
| 73.        | Laspeyer's index nur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nber is based o                           | n?                              |             |                   | <b>June 2022</b>     |
|            | (a) Last year weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (b) Present                               | year weight (c) La              | ist year va | alue (d) Pre      | esent year Value     |
| 74.        | Which one of the fol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lowing is not a                           | ppropriate for calc             | ulation of  | f index numb      | er? <b>June 2022</b> |
|            | (a) Unit Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (b) Price Re                              | elative Test (c) Cir            | cular Tes   | t (d) tim         | e Reversal Test      |
| 75.        | If 'FROZEN' is deco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ded as OFAPS                              | G'. TICK the righ               | t option t  | hat depicts '     | MOLTEN' written      |
|            | in this way                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           |                                 |             |                   | <b>Dec 2022</b>      |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | $\mathbf{N}$ (a) $\mathbf{OFI}$ | IMPN        | (d) OF            | TINDN                |
|            | (a) OFPOMN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (b) OFSMP                                 | $\mathbf{N}$ (c) OF             |             | (u) OI            | UNIN                 |
| 76.        | (a) OFPOMN<br>Find the odd man ou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (b) OFSMP<br>t:                           |                                 |             | (u) OI            | Dec 2022             |
| 76.        | (a) OFPOMN<br>Find the odd man ou<br>34, 105, 424, 2123, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (b) OFSMP<br>t:<br>.2756.                 |                                 |             | (u) 01            | Dec 2022             |
| 76.        | (a) OFPOMN<br>Find the odd man ou<br>34, 105, 424, 2123, 1<br>(a) 12756                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (b) OFSMP<br>t:<br>2756.<br>(b) 2123      | (c) 424                         | UIVII IN    | (d) 34            | Dec 2022             |

| Index N | umbers                             |                                                  | 39.10              |                   | GOP                  | AL BHOOT       |  |  |  |
|---------|------------------------------------|--------------------------------------------------|--------------------|-------------------|----------------------|----------------|--|--|--|
|         | 3 5 5 19 7 41 9 7                  | 11 109                                           |                    |                   |                      |                |  |  |  |
|         | (a) 71                             | (h) 61                                           | (c) <b>6</b> 9     | )                 | (d) <b>7</b> 9       |                |  |  |  |
| 78.     | In certain code lang               | uage, if TOUR                                    | is written as      | 1234. CLEAR       | is written And SI    | PARE is        |  |  |  |
|         | written as 90847, find             | the code for C                                   | ARE?               |                   | De                   | c 2022         |  |  |  |
|         | (a) 1247                           | (b) 4847                                         | (c) 52             | 247               | (d) 5847             |                |  |  |  |
| 79.     | Find the next number               | in the given se                                  | quence?            |                   | De                   | c 2022         |  |  |  |
|         | 11, 17, 39, 85, ?, 281             | , 447                                            | 1                  |                   |                      |                |  |  |  |
|         | (a) 133                            | (b) 143                                          | (c) 15             | 53                | (d) 163              |                |  |  |  |
| 80.     | IF ROSE 'is coded a                | us 6821, CHA                                     | IR is coded as '   | 73456 and PRE     | ACH is coded as      | 961473,        |  |  |  |
|         | what will be the code              | for SEARCH?                                      |                    |                   | De                   | c 2022         |  |  |  |
|         | (a) 246173                         | (b) 214673                                       | (c) 21             | 6473              | (d) 214763           |                |  |  |  |
| 81.     | From the following d               | ata construct th                                 | e index number     | by Laspeyre's     | method $P_1Q_1 = 99$ | $P_{0}Q_{1} =$ |  |  |  |
|         | 76, $P_0Q_0 = 73$ , $P_1Q_0 =$     | = 96                                             |                    |                   | Dee                  | e 2022         |  |  |  |
|         | (a) 130.36                         | (b) 131.51                                       | (c) 13             | 30.59             | (d) 76.01            |                |  |  |  |
|         | Answer:                            | _                                                |                    |                   |                      |                |  |  |  |
|         | ( <b>b</b> ) Here $\sum P_1 Q_1 =$ | $= 99, \sum P_0 Q_1 =$                           | 76                 |                   |                      |                |  |  |  |
|         | $\sum P_0 Q_0 = 7$                 | $3, \sum P_1 Q_0 = 96$                           | )                  |                   |                      |                |  |  |  |
|         | Laspeyre Index                     | No. = $\frac{\sum P_1 Q_0}{\sum P_1 Q_0} \times$ | 100                |                   |                      |                |  |  |  |
|         |                                    | $2P_0Q_0$<br>96 100                              |                    |                   |                      |                |  |  |  |
|         |                                    | $=\frac{1}{73}\times100$                         |                    |                   |                      |                |  |  |  |
|         |                                    | = 131.51                                         |                    |                   |                      |                |  |  |  |
| 82.     | Which of the follow                | ing index mea                                    | sures the chang    | ge from month     | to month in the c    | cost of a      |  |  |  |
|         | representative baske               | t of goods and                                   | d services of t    | he type which     | are bought by a      | typical        |  |  |  |
|         | nousenoid?                         |                                                  | 2. I. 1            | .1                |                      | C 2022         |  |  |  |
| 07      | (a) Retail Price Index             | sher's index                                     | (d) Paasche's Ind  |                   |                      |                |  |  |  |
| 83.     | (a) Easter reversal to             | er is called as ic                               | (b) T              | er because it is  | sausiying. De        | c 2022         |  |  |  |
|         | (a) Factor reversar les            | St<br>ma ravarsal tast                           | (0) I              | (d) Circular test |                      |                |  |  |  |
| 84      | If Laspevre's Index i              | a 110 and Passo                                  | he's Index is 11   | s index number w  | ill be               |                |  |  |  |
| 04.     | II Laspeyre 5 maex h               | 5 117 and 1 asse                                 |                    |                   |                      | Dec 2022       |  |  |  |
|         | (a) 113.99                         | (b) 115.45                                       | (c) 1              | 15.89             | (d) 151.98           |                |  |  |  |
|         | Answer :                           | (0) 110.10                                       | (•) 1              | 10107             | (4) 10 1190          |                |  |  |  |
|         | (b) Laspeyre's I                   | ndex No. $(L) =$                                 | 119                |                   |                      |                |  |  |  |
|         | Paasche's Inc                      | dex No. $(P) = 1$                                | 12                 |                   |                      |                |  |  |  |
|         | Fisher Index                       | No. $(F) = ?$                                    |                    |                   |                      |                |  |  |  |
|         | We know that                       | t F = $\sqrt{L \times P}$                        |                    |                   |                      |                |  |  |  |
|         | =                                  | $=\sqrt{119 \times 112}$                         |                    |                   |                      |                |  |  |  |
|         | -                                  | $=\sqrt{13328}$                                  |                    |                   |                      |                |  |  |  |
|         | -                                  | = 115.45                                         |                    |                   |                      |                |  |  |  |
| 85.     | In price index, when               | a new commod                                     | lity is required t | o be added, wh    | ich of the following | ng index       |  |  |  |
|         | is used?                           |                                                  | <b>5</b> 1         | ,                 | Dee                  | c 2022         |  |  |  |
|         | (a) Shifted price inde             | X                                                | (b) S <sub>1</sub> | olicing price ind | lex                  |                |  |  |  |
|         | (c) Deflating price in             | dex                                              | (d) V              | alue price index  |                      |                |  |  |  |
| 86.     | Consider the data                  |                                                  |                    |                   |                      |                |  |  |  |
|         | Year                               | Base Y                                           | 'ear               | C                 | urrent Year          |                |  |  |  |
|         |                                    | Price                                            | Quantity           | Price             | Quantit              | y              |  |  |  |
|         | А                                  | 10                                               | 5                  | 20                | 2                    |                |  |  |  |
|         | В                                  | 15                                               | 4                  | 25                | 8                    |                |  |  |  |
|         | C                                  | 40                                               | 2                  | 60                | 6                    |                |  |  |  |
|         | D                                  | 25                                               | 3                  | 40                | 4                    |                |  |  |  |
|         | Laspeyre's index is .              | June 2023                                        |                    | 164.06            |                      |                |  |  |  |
|         | (a) 166.04                         | (b) 156.04                                       | (c)                | 164.06            | (d) 154.06           |                |  |  |  |
|         | Answer:                            |                                                  |                    |                   |                      |                |  |  |  |

(a) Sol.

| Years |                           | Base year  |                | C                         | urrent year | t years               |  |  |
|-------|---------------------------|------------|----------------|---------------------------|-------------|-----------------------|--|--|
|       | Price                     | Quantity   | Price          | Quantity                  | poqo        | <b>p</b> 1 <b>q</b> 0 |  |  |
|       | ( <b>p</b> <sub>0</sub> ) | <b>q</b> o | $\mathbf{p}_1$ | ( <b>q</b> <sub>1</sub> ) |             |                       |  |  |
| Α     | 10                        | 5          | 20             | 2                         | 50          | 100                   |  |  |
| В     | 15                        | 4          | 25             | 8                         | 60          | 100                   |  |  |
| С     | 40                        | 2          | 60             | 6                         | 80          | 120                   |  |  |
| D     | 25                        | 3          | 40             | 4                         | 75          | 120                   |  |  |
|       |                           |            |                |                           | $p_0q_0$    | $p_1q_0$              |  |  |
|       |                           |            |                |                           | =265        | =440                  |  |  |

Laspeyre's Index No. =  $\frac{\sum p_1 q_0}{\sum p_0 q_0} \times 100$ 

$$=\frac{\frac{10}{440}}{\frac{265}{265}} \times 100$$

- Which of the following index is computed taking the average of base year and current year? 87. **June 2023** 
  - (a) Marshall-Edgeworth's index
- (b) Paasche's index

(c) Laspeyre's index

(d) Fisher's index

Answer:

(a) Marshall – Edgeworth's Index is computed taking the Average of base year and current year.

- 88. The index number of prices for a country at a given date in 250. In comparison to the base period price the price of all commodities in the country has increase by \_\_\_\_\_ times. June 2023
  - (a) 1.25 (b) 1.5 (c) 2(d) 2.5

**Answer:** 

(b) The Index No. of prices for a country at a given date = 250

Here Current price = 250Base price = 100Price Increased = 250 - 100 = 150 $= 1.5 \times 100$ 

= 1.5 times of Base Price

- **89.** If Fisher's index number is 160 and Paasche's index number is 140 laspeyre's index 40 is : **June 2023** 
  - (a) 187.77 (b) 182.86 (c) 183.25 (d) 186.25

Answer:

(**b**) Given Fisher's Index No. (F) = 160Paashe' index No. (P) = 140Laspere index No. = ?  $F = \sqrt{L \times P}$  $F^2 = L \times P$  $L = \frac{F^2}{P} = \frac{(160)^2}{140} = \frac{160 \times 160}{140} = 182.86$ 

**90.** Weighted guarantee means of relative formula satisfies \_\_\_\_\_\_ test while as factor reversal test is satisfied be \_\_\_\_\_. **June 2023** (a) Time reversal Firher's ideal index (b) Time reversal Laspeyre' index (c) Factor reversal Paasche's index 0 (d) Factor reversal Firsher's ideal index

## Answer:

- (a) Time reversal fisher's ideal index.
- The gross monthly pay of an employee was ₹ 15,000 in a year 2020. The consumer price index 91. number in 2023 is 155 with 2020 as base year. If employee is to rightly compensate what dearness allowance is required to be paid ? dec 2023 (a)₹ 8,000 (b)₹ 8,250 (c)₹ 8,500 (d)₹ 8,750 Answer:

| Index Numbers |                      |                                              |                                         | 39.                    | 12          |           | GOPAL BHOOT                        |
|---------------|----------------------|----------------------------------------------|-----------------------------------------|------------------------|-------------|-----------|------------------------------------|
|               | <b>(b)</b>           |                                              |                                         |                        |             |           |                                    |
|               | Year                 | r (                                          | C.P.I                                   | N                      | /Ionthly    |           |                                    |
|               | 2020                 | 0                                            | 100                                     |                        | 15000       |           |                                    |
|               |                      |                                              |                                         | I.                     |             | 1         |                                    |
|               | 202                  | 23                                           | 155                                     | *                      | ×           | *         |                                    |
|               |                      |                                              |                                         |                        |             |           |                                    |
|               | 100                  | 15000                                        |                                         |                        |             |           |                                    |
|               | 100                  | $=\frac{15000}{x}$                           |                                         |                        |             |           |                                    |
|               | X                    | $=\frac{15000 \times 155}{15000 \times 155}$ |                                         |                        |             |           |                                    |
|               |                      | $^{100}$ - 23250                             |                                         |                        |             |           |                                    |
|               | DA                   | = 23250 - 1                                  | 5000 = Rs                               | 8250                   | )           |           |                                    |
| 92.           | An Index numbe       | r = 23230                                    | to measu                                | re the                 | relative    | change    | in the price of an item or a group |
|               | of item is called:   | dec 2023                                     |                                         |                        |             |           |                                    |
|               | (a) Quantity inde    | ex number                                    |                                         |                        | (b) P1      | rice inde | ex number                          |
|               | (c) Volume index     | x number                                     |                                         |                        | (d) C       | omposi    | te index number                    |
|               | Answer:              |                                              |                                         |                        |             | -         |                                    |
|               | ( <b>b</b> ) An inde | ex Number c                                  | onstructed                              | to Me                  | easure th   | e relativ | ve change in                       |
|               | the pric             | ce of an item                                | or a group                              | of ite                 | m is call   | ed Pric   | e Index No.                        |
| 93.           | Fisher's index do    | oes not satisf                               | y followin                              | g test.                | dec 202     | 23        |                                    |
|               | (a) Unit test        |                                              |                                         |                        | (b) Ti      | me Rev    | versal Test                        |
|               | (c) Circular Test    |                                              |                                         |                        | (d) Fa      | actor Re  | eversal Test                       |
|               | Answer:              | a Inday Na                                   | doog not g                              | tisfie                 | d aircula   | r tost    |                                    |
| 04            | (c) Fisher           | s index is 11                                | 0 and Pas                               | uisneo                 | index i     | r = 108 t | hen what is the value of Fisher's  |
| 24.           | index 2 dec 2023     |                                              | U allu Fas                              | sene s                 |             | s 100,u   | then what is the value of Fisher's |
|               | (a) $10650$          | (b) 1                                        | 07 60                                   |                        | (c) 1(      | 99 80     | (d) 109 88                         |
|               | Answer:              | (0) 1                                        | 07.00                                   |                        | (0) 10      | 0.77      | (4) 109.00                         |
|               | (c) Given, 1         | Laspeyre Ind                                 | lex(L) = 1                              | 10                     |             |           |                                    |
|               | Paasche              | e Index $(P) =$                              | : 108                                   |                        |             |           |                                    |
|               | Then F               | isher Index t                                | $o = \sqrt{L \times L}$                 | P)                     |             |           |                                    |
|               |                      |                                              | $=\sqrt[4]{11}$                         | $\frac{1}{0 \times 1}$ | 08          |           |                                    |
|               |                      |                                              | = 108.9                                 | 9                      |             |           |                                    |
| 95.           | From the year 2      | 2013 to 2023                                 | , Consum                                | er pri                 | ce index    | numbe     | er is increased from 135 to 180.   |
|               | During this peri     | od, salary o                                 | f the emp                               | loyees                 | as per      | pay co    | mmission recommendations was       |
|               | revised from ₹ 2     | 23,000 to 29                                 | ,500.In rea                             | l tern                 | ns, an er   | nployee   | e should get following additional  |
|               | amount (upto nea     | arest whole r                                | number) to                              | maint                  | tain his p  | previous  | s standard of living. dec 2023     |
|               | (a) ₹ 1,167          | (b) ₹                                        | 666                                     |                        | (c) ₹       | 909       | (d) ₹ 6,500                        |
|               | Answer:              |                                              |                                         |                        |             |           |                                    |
|               | (a)                  |                                              |                                         | 0                      | . 1         |           |                                    |
|               | Ye                   | ar _                                         | C.P.Z                                   | 2                      | alary       |           |                                    |
|               |                      |                                              |                                         |                        |             |           |                                    |
|               | 20                   | 13                                           | 135 u                                   |                        | 23 000      |           |                                    |
|               | 202                  | 23                                           | 180                                     |                        | 25,000<br>X |           |                                    |
|               | 1                    | .35 _ 23,000                                 | ↓ I I I I I I I I I I I I I I I I I I I |                        |             | ¥         |                                    |
|               | 1                    | .80 x<br>180 .                               |                                         |                        |             |           |                                    |
|               | 2                    | $x = \frac{100}{135} \times 23$              | 3,000                                   |                        |             |           |                                    |
|               | 2                    | x = 30,667                                   |                                         |                        |             |           |                                    |
|               | Additio              | on Salary sho                                | uld be $= 3$                            | 0,667                  | - 29,500    | )         |                                    |
|               |                      |                                              | = 1                                     | 167 aj                 | pprox.      |           |                                    |
|               |                      |                                              |                                         |                        |             |           |                                    |

| Answer Key |   |     |   |     |   |     |   |     |   |     |   |     |   |     |   |     |   |     |   |
|------------|---|-----|---|-----|---|-----|---|-----|---|-----|---|-----|---|-----|---|-----|---|-----|---|
| 1.         | с | 2.  | d | 3.  | b | 4.  | с | 5.  | b | 6.  | d | 7.  | С | 8.  | b | 9.  | a | 10. | a |
| 11.        | a | 12. | b | 13. | d | 14. | b | 15. | b | 16. | b | 17. | b | 18. | a | 19. | d | 20. | b |
| 21.        | d | 22. | с | 23. | a | 24. | d | 25. | b | 26. | b | 27. | b | 28. | a | 29. | b | 30. | b |
| 31.        | d | 32. | d | 33. | a | 34. | a | 35. | b | 36. | a | 37. | с | 38. | d | 39. | b | 40. | a |
| 41.        | a | 42. | a | 43. | С | 44. | с | 45. | С | 46. | а | 47. | а | 48. | а | 49. | С | 50. | d |
| 51.        | a | 52. | b | 53. | а | 54. | с | 55. | d | 56. | d | 57. | а | 58. | b | 59. | С | 60. | a |
| 61.        | d | 62. | d | 63. | a | 64. | d | 65. | b | 66. | b | 67. | b | 68. | b | 69. | a | 70. | с |
| 71.        | с | 72. | с | 73. | a | 74. | b | 75. | с | 76. | b | 77. | a | 78. | d | 79. | d | 80. | b |
| 81.        | b | 82. | a | 83. | С | 84. | b | 85. | a |     |   |     |   |     |   |     |   |     |   |